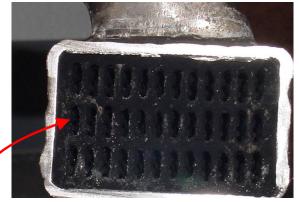
The Impact of PM and HC on EGR Cooler Fouling Poster P-12

15th Directions in Engine-Efficiency and Emissions Research Conference Dearborn, MI – August, 2009

Dan Styles, Eric Curtis and Nitia Ramesh

Ford Motor Company – Powertrain Research and Advanced Engineering

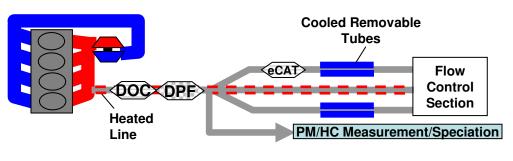
Dennis Assanis, John Hoard and Mehdi Abarham University of Michigan


Scott Sluder, John Storey and Michael Lance Oakridge National Laboratory

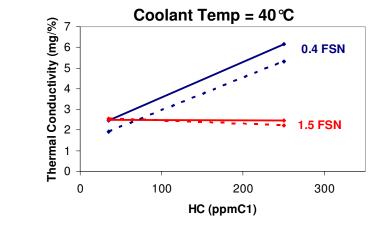
Research and Advanced Engineering

The Impact of PM and HC on EGR Cooler Fouling

- For 2010+, higher EGR rates and more cooling required to reduce NOx and maintain A/F ratios, but.....
 - More HC's
 - More PM/SOF
 - Broader usage of EGR
 - More likely condensation
 - WORSE EGR COOLER FOULING



After 200 hr. Fouling Test


Soot and HC based deposits in EGR cooler degrade heat transfer performance and increase pressure drop.

Research and Advanced Engineering

- Cooled EGR sampling apparatus:
 - Control PM/HC levels independently
 - Include other key factors (ex: coolant temperature)
 - Monitor key metrics (effectiveness, mass gain)
 - Speciation of gas born constituents and deposits
 - Examine deposition propensities

 Data used to correlate an EGR cooler fouling model.