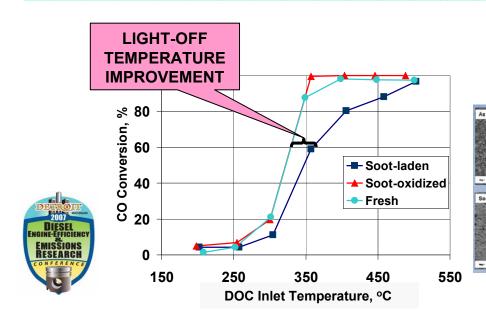


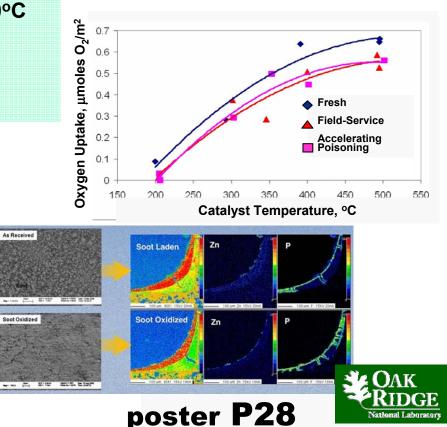


## Impact of Lube-oil Phosphorus on Diesel Oxidation Catalysts

Scott J. Eaton<sup>a,b</sup>, Bruce G. Bunting<sup>a,b</sup> Todd J. Toops<sup>a</sup> and Ke Nguyen<sup>b</sup>


 <sup>a</sup> Fuels, Engines and Emissions Research Center Oak Ridge National Laboratory
<sup>b</sup> Department of Mechanical, Aerospace and Biomedical Engineering University of Tennessee at Knoxville

POSTER – P-28 Tuesday, August 14<sup>th</sup>


> OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

## **Objective:** Isolate effects from phosphorus poisoning and soot fouling in field-aged and accelerated phosphorus-poisoned DOCs

- Phosphorus leads to CePO<sub>4</sub> or ZnP<sub>2</sub>O<sub>7</sub>
  - Depends on temperature and oil pathway
- Soot also accumulates on washcoat
  - creates diffusion barrier
- Soot fouling and phosphorous effects can be isolated with bench reactor
  - Oxidization of soot occurs above 450°C
  - Phosphorus remains unchanged
- THC and CO light-off temperature restored to fresh performance



- Phosphorus adsorbs on DOC washcoat as CePO<sub>4</sub>
  - Decreases OSC
  - Levels don't degrade THC and CO light-off in our tests

