

Impact of ALD Coating on Mn-rich Cathode Materials

Shriram Santhanagopalan Center for Transportation Technologies and Systems National Renewable Energy Laboratory

May 14, 2013

Project ID #ES196

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Timeline

Project Start Date: 06/01/2012 Project End Date: 05/31/2013 Percent Complete: 70 %

Budget

Total Project Funding:	\$110k	
DOE Share:	\$110k	
Contractor Share:	N/A	
Funding Received in FY12: \$110k		
Funding for FY13:	\$0	

Barriers

• Barriers addressed:

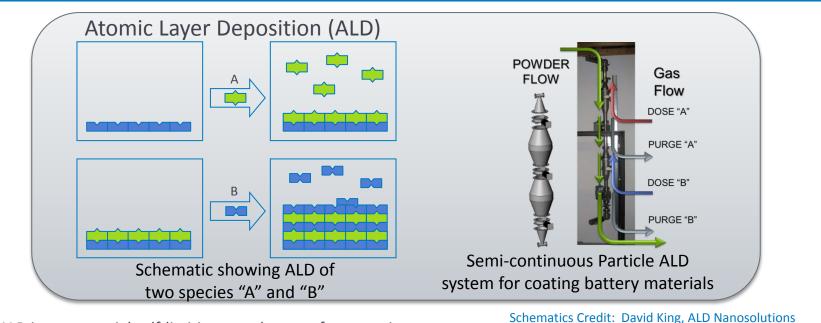
- Capacity fade during cycling of Mn-rich cathode materials at high temperatures
- Scale-up issues associated with Atomic Layer Deposition

Partners

- Mohamed Alamgir (LGCPI)
- Karen Buechler, David King (ALD NanoSolutions, Broomfield, CO)
- Chunmei Ban and Rob Tenent (NREL)
- Se-He Lee (University of Colorado)

Relevance and Objectives

- The Advanced Battery Research (ABR) program identified manganese rich cathode as an attractive candidate for vehicle batteries. This material offers several benefits, including a wider operating window and higher energy density.
- One of the major limitations of this material pertains to cycle life.
- LG Chem Power Inc. (LGCPI) and NREL have previously conducted a scoping study on coating Mn-rich cathodes with oxides of alumina, which provided useful indicators to improving cell performance:
 - Atomic Layer Deposition (ALD) coating mildly reduced power capability
 - Improvement in cycling due to coating is significant when applied to Mn-rich cathode
 - Anode coating did not bring about much of an improvement
- With this background, LGCPI and NREL jointly proposed to assess the scalability of the ALD coating technique on Mn-rich cathode material as well as sheets of electrodes.
- The objectives of this effort are:
 - To evaluate the scalability of ALD coatings on large batches of Mn-rich cathode (from LGCPI) at a pilot-scale to improve rate capability, life, and abuse tolerance of this material.
 - To assess the feasibility of coating electrodes using the ALD technique


Milestones

Month/Year	Milestone or Go/No-Go Decision	Description	Status
Oct. 2012	Milestone report titled "Impact of ALD Coating on Mn-rich Cathode Materials"	 NREL and ALD Nanosolutions built a subcontract in place to coat cathode powders and electrodes Two baseline samples were coated to produce four different batches of coated material 	Complete
Dec. 2012	NREL to fabricate cells from baseline and coated samples for screening	 Coin cells were fabricated using both the baseline and coated materials to down-select coating conditions for the second round 	Complete
Mar. 2013	NREL to ALD coat electrode samples with help from subcontractor	 ALD Nanosolutions modified coating reactors to include sheet samples Electrodes for large-format (5"x5") pouch cells were coated 	Complete
June 2013	LGCPI to evaluate performance of coated powders and electrodes	 LGCPI will fabricate pouch format cells to evaluate improvements in cycling performance against the baseline cathodes 	On Track

Approach/Strategy

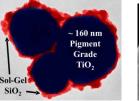
- LGCPI and NREL built upon the success of the lab-scale work to demonstrate the benefits of the ALD technique to evaluate the scalability of the ALD coating process and the benefits of ALD coatings for long-term cycling and calendar life.
- As part of the scalability assessment, direct coating of electrode sheets was implemented, and the results was compared to coating active material powders to fabricate electrode sheets in a subsequent step.
- To accomplish these steps, NREL obtained bulk quantities of manganese-rich cathode powder and electrode sheets and coat the samples with help from a subcontractor (ALD Nanosolutions).
- The coating parameters were optimized using screening tests carried out at NREL, which included fabrication of coin cells from those samples.
- The powders and electrodes coated under revised conditions are currently being evaluated by LGCPI in large-format pouch cells.

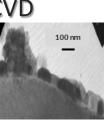
Particle ALD[™]: Basics of Atomic Layer Deposition

- ALD is a sequential self-limiting gas-phase surface reaction.
- Film thickness is controlled by the number of cycles.

ALD is well established

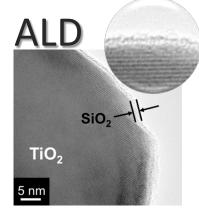
•


- Common in semiconductor industry
- Various applications for coating 3D objects
- Commercial reactors available


How to coat large batches of individual particles?

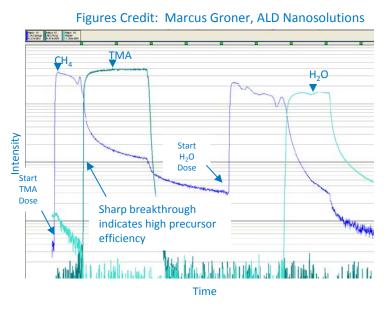
✓ Fluidized Bed Reactor (FBR)

- Gas flow fluidizes bed of particles
- Excellent mixing and heat transfer
- High surface area particles coated conformally
- Industrially scalable technology


Sol-Gel CVD

Unrivaled Particle Encapsulation

Competing coating technologies cannot produce the precision or quality of films that ALD can


Technical Accomplishments: Particle ALD™ at ALD NanoSolutions

ALD NanoSolutions has the capability to process multiple batch size of powders in three separate reactors which scale the Particle ALD[™] coating from 10s of grams to 10s of kg batches.

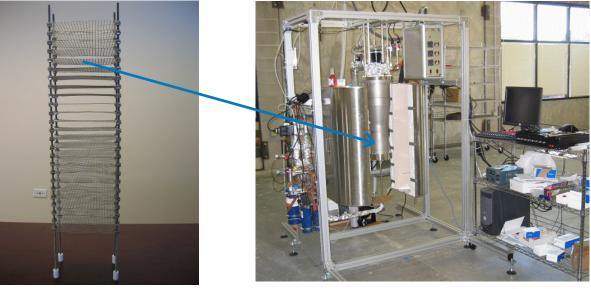
The existing ALD FBR reactor can process up to 8L of powder per batch

Gas Flow

Chemical Efficiency of a typical ALD FBR Process: Batch reactors use in-situ process monitoring with a Residual Gas Analyzer. The calibration curve shown above is used to assess efficiency of the-coating process

Process Steps:

- 1) Load bed of powders into Fluidized Bed Reactor (FBR)
- 2) Fluidize powders at coating temperature and pressure
- 3) Sequentially introduce ALD precursors A-purge-B-purge
- 4) Repeat 3 for desired number of cycles


Two baseline samples were coated to produce 4 different batches of coated active material.

Technical Accomplishments: Electrode Coating at ALD NanoSolutions

In addition to a small-volume traditional flats ALD reactor and developing roll-to-roll ALD coating, ALD NanoSolutions can install a holder for carrying out ALD onto a large number of flats into the large-volume ALD particle reactors.

In the FY12 phase of the work with ALD NanoSolutions, NREL subcontracted the installation of an electrode-rack to facilitate this reactor modification process.

An electrode holder for up to 25 electrodes of 6"x6" size was devised for ALD coating sheet electrodes directly.

Electrodes of 6" x 6" size will be coated directly using the holder build under NREL subcontract. Coating of Mn-rich NMC material underway.

Process Steps:

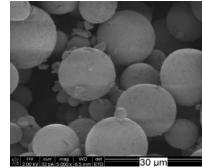
- 1) Load reactor with electrodes
- 2) Bring reactor to coating temperature and pressure
- 3) Sequentially introduce ALD precursors A-purge-B-purge
- 4) Repeat three for desired number of cycles

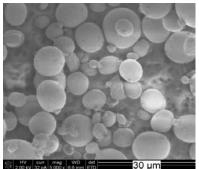
Sheet samples of the Mn-rich cathode were coated using the modified reactors for fabrication and evaluation of large-format pouch cells at LGCPI.

All Photos Credit: Marcus Groner, ALD Nanosolutions

Technical Accomplishments: Initial Results

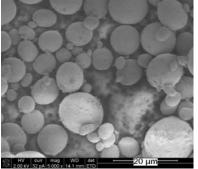
Chemical Stability:

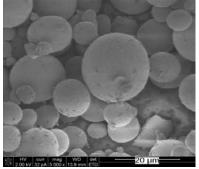

 Check for chemical stability by storing the ALD-coated samples in the electrolyte at 60°C did not show any abnormal gassing.


SEM Images:

- The coatings on both types of particles show good uniformity.
- The alumina on LGC-HM02 tends to flake off readily (perhaps due to a different surface treatment on the baseline particles).
- No performance issues were observed due to the flakes, indicating that this is essentially a processing difficulty.
- Tailoring the surface properties of the coatings to match those of the baseline material will help overcome such issues.

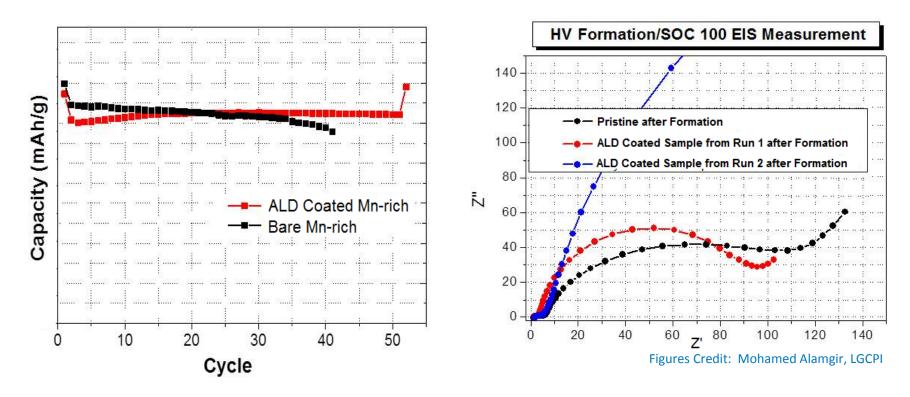
Al ₂ O ₃ Content	2 Cycle	5 Cycle
LGC-HM-01	0.98%	1.86%
LGC-HM-02	1.12%	1.91%


Weight percentages of Al₂O₃ coating



Sample - 1 (Baseline)

Sample - 1 (Coated)


Sample - 2 (Baseline)

Sample - 2 (Coated)

SEM Images Credit: Bobby To, NREL

Technical Accomplishments: Cell Evaluation

- During the initial evaluation, the coated sample showed almost no degradation after fifty 100% Depth of Discharge (DOD) cycles between 4.4 and 2.75 V, whereas the baseline sample showed a decline in capacity.
- Some rate-limitations were observed at higher C-rates; an increase in the impedance was also noticeable.
- These issues are addressed in the subsequent coating trials by selecting the coating parameters to match target performance.
- There were no noticeable variability in coating the different batches indicating no limitations in scaling from labscale to the pilot scale.

- NREL and LGCPI have collaborated over several years in building Atomic Layer Deposition as a viable technique to improve the safety and cycling performance of lithium battery materials.
- This project actively leverages prior work by the two teams to address a performance limitation that will enable use of the manganese-rich material for use in automotive batteries.
- ALD Nanosolutions is a pioneer in developing the atomic layer deposition process and has rapidly transitioned lab-scale results to the industry in multiple disciplines.
- The Energy Storage group at NREL also has an ongoing collaboration with the University of Colorado at Boulder in screening the coating and test conditions.

- This was a short-term, fast-track project (total duration: one year)
- For the remainder of the performance period, the team will continue ongoing efforts in the following areas:
 - i) Evaluating coating of powders versus coating of electrodes
 - ii) Testing of large format cells fabricated using the ALD-coated electrodes
- The final milestone will focus on delivering cell-level test results from LGCPI

Future work Pending Support:

- Continue to evaluate functional ALD coatings, working with NREL's ALD team
- Fine-tuning ALD attributes such as material composition and conductivity across the coating, as well as correlating these target properties with the deposition conditions will provide better control over the process.
- Future support will help identify the process-knobs to build functional coatings at the production scale.
- A semi-continuous production option has been validated at ALD Nanosolutions for large-scale manufacturing; future support will help transition this effort into a continuous, in-line coating step integrated with the cell-fabrication process.

Summary

- Pilot-scale ALD coating of Mn-rich cathode powders and electrode sheets were successfully demonstrated.
- Initial evaluation results indicate that better cycling performance over the baseline material.
- Our studies show that the atomic layer deposition technique is quite scalable with the cathode powders.
- A semi-continuous production option has also been validated for large-scale manufacturing and will facilitate industry adoption.
- Large-format cell testing is currently underway.
- The unique talent at ALD Nanosolutions, expert guidance from LGCPI and insight from University of Colorado at Boulder have come together to help NREL deliver a reasonable solution for this fast-paced project.