Ignition Control for HCCI

Project ID – ace_18_edwards

K. Dean Edwards

Robert M. Wagner Charles E. A. Finney C. Stuart Daw Oak Ridge National Laboratory

Keith Confer Matt Foster Delphi Corporation

DOE Management Team: Gurpreet Singh, Drew Ronneberg U.S. Department of Energy Office of Vehicle Technologies

2009 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review 20 May 2009

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Objectives

Project Objective

A multi-year CRADA between ORNL and Delphi to demonstrate a practical application of HCCI in a production-level, light-duty gasoline engine.

FY2008-2009 Objectives

- Benchmark multi-cylinder engine in SI operation with stock hardware Complete
- Evaluate designs for hardware upgrades
 - » Delphi cam phasers Installed
 - » Low-lift cam designs for HCCI operation Near completion
 - » Delphi fuel injectors with finer resolution and less shot-to-shot variability Installed
- Fabricate and install Delphi 2-step valve-lift hardware Summer 2009
- Develop spark-assisted HCCI (SA-HCCI) model for real-time diagnostics and control Development complete, calibration underway

Overview

Timeline

- Start Date: Oct 2006
- End Date: Oct 2009

Budget

- FY 2007 \$300k
- FY 2008 \$300k
- FY 2009 \$300k

Partners

- CRADA between ORNL and Delphi
- Collaboration with LLNL

Barriers Addressed

- Market Challenges and Barriers from OVT MYPP:
 - » A. Cost. "...Better use of advanced LTC modes to reduce the formation of emissions in-cylinder will reduce aftertreatment system requirements and associated costs."
 - o HCCI to reduce in-cylinder production of NOx
 - o Demonstration of practical variable valve actuation system
- Technical Challenges and Barriers from OVT MYPP:
 - » **B.** Fundamental knowledge of engine combustion. "Engine efficiency improvement [and] engine-out emissions reduction ... are inhibited by an inadequate understanding of the fundamentals of ... in-cylinder combustion/emission formation processes ... as well as by an inadequate capability to accurately simulate these processes."
 - o Improving understanding of SA-HCCI through experiments and model development
 - » D. Engine controls. "Effective sensing and control of various parameters will be required to optimize operation of engines in advanced LTC regimes over a full loadspeed map similar to that of a gasoline or diesel engine."
 - Development of real-time diagnostics and controls to stabilize SA-HCCI and smooth SI-HCCI mode transitions

3

Managed by UT-Battelle for the U.S. Department of Energy

Milestones and Project Timeline

FY2009 Milestone: Characterize cyclic-dispersion mechanisms on Delphi multi-cylinder engine (30 Sept 2009)

Status: On track

Update: Analysis of SA-HCCI data from multi-cylinder engine is underway. Adapting models and analysis techniques for the single-cylinder engine to this engine.

<i>Phase 1</i> Model debug, Baseline OEM system	<i>Phase 2</i> Steady-state HCCI mapping, Cam lift/duration evaluation	Phase 3 SI/HCCI Transitions
Jan 2007 Sept	2008 Aug	2009 Dec 2009
 Single-cylinder experiments SI/HCCI mode transitions SA-HCCI dynamics Baseline development Modeling Initial SA-HCCI model development GT-Power simulation GT-Power cam profile comparisons Component build Cams, 2-step VVA prep, DICP Low-flow DI injector design 	 Component selection DICP, Low-flow DI injectors HCCI domain evaluation HCCI fixed cam profile evaluation Map control parameters' influence coefficients Characterize SA-HCCI dynamics Modeling GT-Power HCCI modeling SA-HCCI model calibration and integration with GT-Power Component build 2-step VVA 	 Transition testing 2-step w/ DICP SI/HCCI mode transitions Modeling GT-Power HCCI/SI transition modeling EMS development Cycle/cycle control implementation SI/HCCI mode transitions HCCI domain optimization Optimization vs. baseline Fuel consumption Emissions

Approach

) A K

National Laboratory

CRADA between ORNL and Delphi

Delphi provides hardware expertise

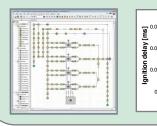
DELPHI

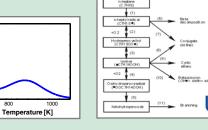
DELPHI

ORNL provides expertise in analysis and control of nonlinear systems

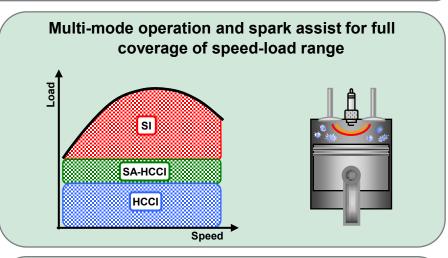
Multi-cylinder, production-level engine platform

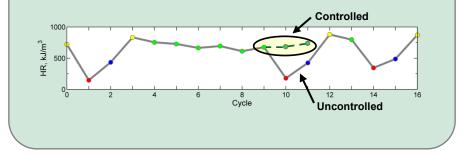
- GM Ecotec, DI gasoline, 2.2-L, 4-cylinder
- Delphi cam phasers and 2-step valve-lift hardware
- Delphi CPDC high-speed controller





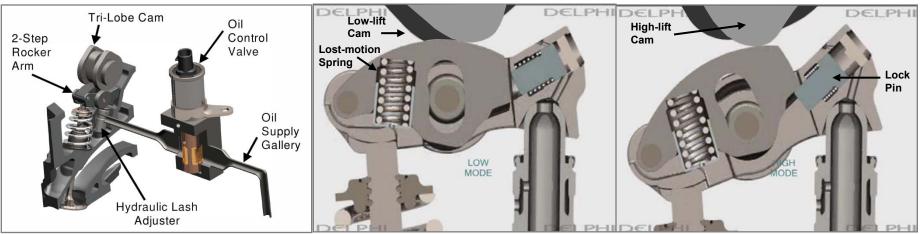
Engine and combustion modeling


- GT-Power model for initial hardware design and evaluation
- Phenomenological model for real-time diagnostics and control
- Detailed HCCI kinetics model



5

Real-time predictive models and control strategies

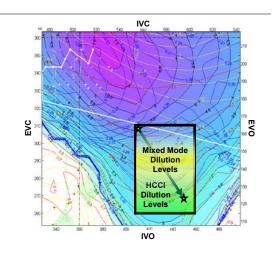

- Smooth combustion mode transitions
- Stabilize SA-HCCI

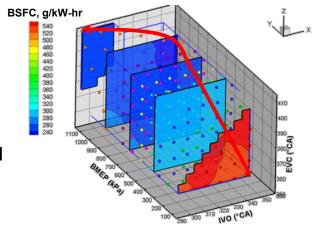
Engine hardware

- Engine installed at Delphi Technical Center in Rochester, NY
 - » GM Ecotec, 2.2-L, 4-cylinder, DI gasoline
 - » Delphi cam phasers with 80° authority
 - » Delphi fuel injectors for improved injection control
- Successfully achieved SI, SA-HCCI, and HCCI
- Evaluating cam designs for 2-step valve-lift hardware
 - » SI baseline with stock cams (10-mm lift) complete
 - » Evaluation of low-lift cam designs for HCCI near completion

SAE 2007-01-1285

Engine development strategy

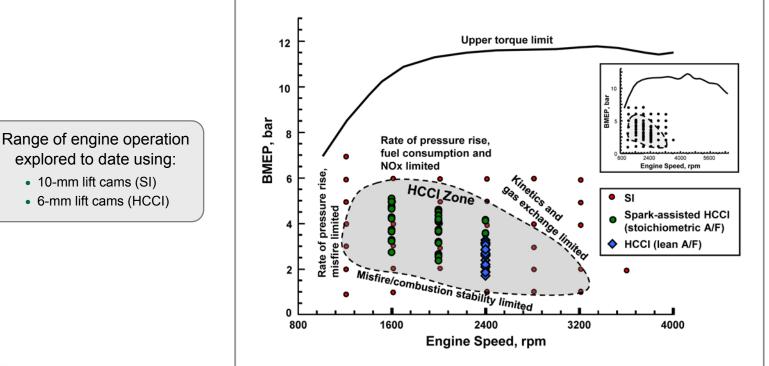

Simulations are guiding engine component selection and design


GT-Power engine model

- » Identify cam-phasing window to allow proper dilution for SI and HCCI operation
- » Evaluate potential cam designs (lift & duration) for SI and HCCI operation

Experiments are guiding refinement and optimization of hardware

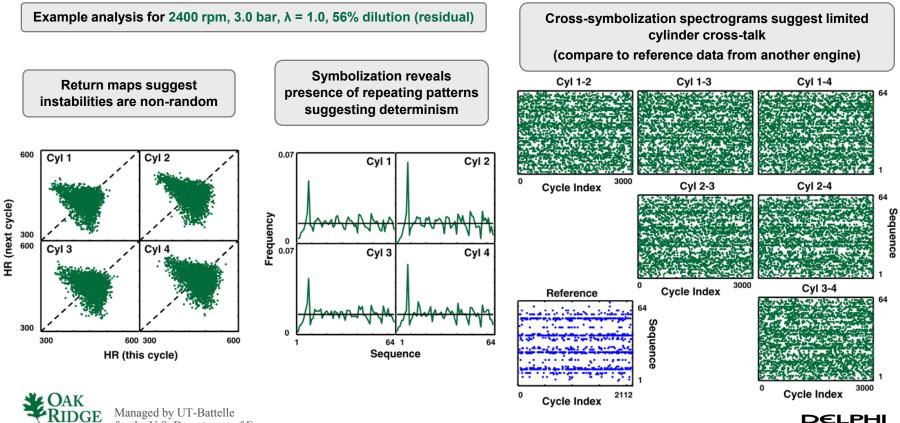
- Cam phasing sweeps
 - » Identify timings for optimum efficiency over speed/load range
- Selection of 2-step cam design using fixed cams
 - » Stock cams (10-mm lift) for SI operation
 - » Low-lift cams (4, 5.6, & 6 mm lift) being evaluated for HCCI operation
- Injector evaluation and development of injection strategy for HCCI
 - » Single vs. multiple injections (with pilot during recompression)



Exploration of engine operational range

Demonstrated engine operation in SI, SA-HCCI, and HCCI modes

- Initial HCCI operating window is limited, even with spark assist
- Currently exploring potential opportunities for expanding this window
 - » Lower-lift (5.6-mm, 4-mm) cams
 - » Higher-resolution injectors with multiple injection strategy
 - » Control to reduce combustion instability



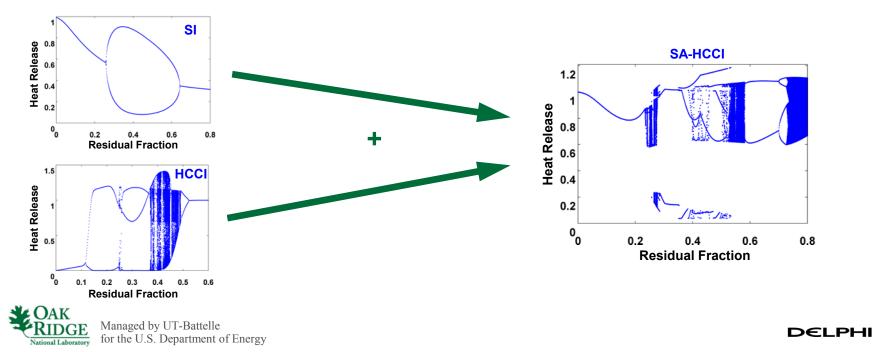
8

Analysis of combustion instabilities in the multi-cylinder engine

Confirms unstable SA-HCCI has significant deterministic component

- Implies predictive control could extend operating window
- Patterns superficially similar to lean-limit combustion
- Cylinder cross-talk appears to be minimal at conditions analyzed to date
- Adapting previous models and control strategies based on multi-cylinder data

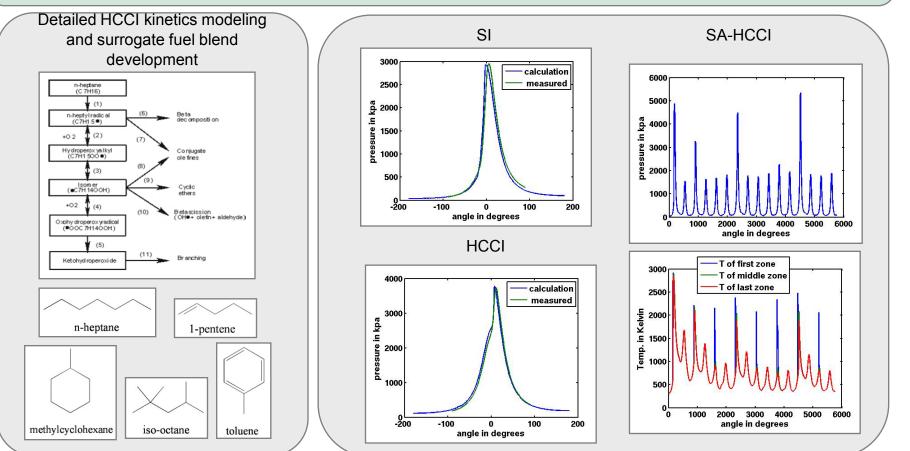
aboratory for the U.S. Department of Energy


Spark-assisted HCCI model status

Targets real-time diagnostics and control of SA-HCCI

- Simple phenomenological model uses global kinetics to predict cycle-resolved combustion performance based on knowledge of recent combustion history
 - » Integration with GT-Power for study of mode transition dynamics
 - » Simple form allows computation in real-time for diagnostics and control
- Couples simple sub-models for SI and HCCI

10


- » Diluent-limited (EGR) flame propagation (SI) [Rhodes, Keck. SAE 850047.]
- » Temperature-driven residual combustion (HCCI) [Daw, et al. ASME J.Eng.Power>. 130(5).]
- Will be calibrated specifically with multi-cylinder engine data

Collaboration with Lawrence-Livermore National Laboratory

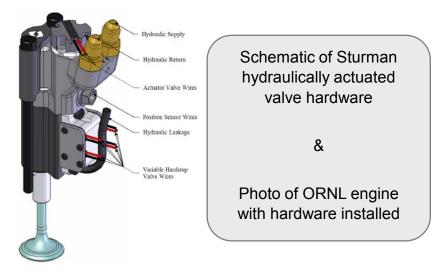
Modeling of High-Efficiency Clean Combustion Engines

- ORNL providing single-cylinder SA-HCCI data
- LLNL developing detailed models of kinetic mechanisms for SI, HCCI and SA-HCCI combustion
- Modeling of (many) consecutive cycles to investigate development of combustion instabilities
- ACE 12, 16:15 Tues 19 May 2009, Crystal City E&F (Aceves, Havstad, et al.)

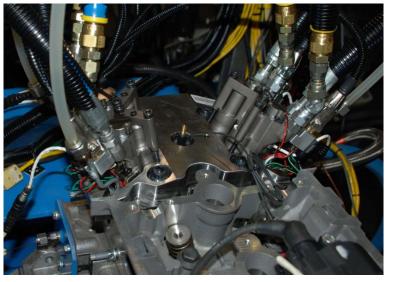
11

Managed by UT-Battelle for the U.S. Department of Energy National Laboratory

Technical Accomplishments – Summary


- Demonstrated SI, SA-HCCI, and HCCI on the multi-cylinder engine
- GT-Power engine model completed and used to develop initial hardware designs
- Hardware evaluations and upgrades
 - » Delphi cam phasers Installed
 - » Evaluation of low-lift cam designs for HCCI operation Near completion
 - » Delphi fuel injectors with finer resolution and less shot-to-shot variability Installed
- Cycle-resolved SA-HCCI model for real-time diagnostics and control complete, calibration with multi- and single-cylinder engine data underway
- US Patent 7,431,011 issued 7 October 2008 for our techniques to diagnose and control combustion instabilities in HCCI and SA-HCCI operation
- Continued collaboration with LLNL to develop detailed kinetics-based model of HCCI and SA-HCCI

	United States Patent Wagner et al.	(10) Patent No.: US 7,431,011 B2 (40) Date of Patent: Oct. 7, 2001
(54)	METHOD AND DEVICE FOR DIAGNOSING AND CONTROLLING COMMENTION INSTAILLING IN INTERNAL COMMUNITON ENGINE OPELATING IN OR TRANSITIONING TO HOMOGENEOUS CHARGE COMMENTION IGCNICA MOOP	(52) U.S. CL. 125/299, 701/10 (53) Flobt of Chevilitention Search 125/299, 121/299, 101/10 (54) 125/295, 300, 568.11, 501/20, 701/10 10 See application file for complete sourch bioary. (55) References Cited
	Insuriers: Robert M, Wagner, Knowilk, TN (US), Charles S, Dav, Knowilk, TN (US), Johney B, Green, Knowille, TN (US), Kevin D, Edwards, Knowille, TN (US)	U.S. PATENT DOCUMENTS 5/01.221 A 7/1999 Dovice al 6/030.041 B1* 5/202 Yang
(73)	Assignee: UT-Battelle, LLC, Onk Hidge, TN (US)	7,290.522 R2* 11/2007 Reymond et al 123/20
(*)	Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 132 days.	* cited by examiner
(21)	Appl. No.: 11/676,485	Primary Examiner - Higa T Va (74) Attorney: Agent or Firm-Edua I, Gergel
(22)	Filed Feb. 2, 2007	(57) ABSTRACT
(65)	Prior Publication Data	
	Provisional application No. (07)765.521, Find on Feb. 5, 2006, previoual application No. (07)28/0925, filed on Oct. 4, 2006. Int.CL. P207 5400 (2006.01) Good 7.700 (2006.01) File20 74:00 (2006.01)	bution process based on comburtion process manuferment determining the trajectory (sequence) of status for considered in a continuing processes, and determining, obsequent our bution process modifications using sold atformation to tree the organic mominisment sound attend balancies. 14 Claims, 14 Drawing Sheets
	1 2% internal	ECCC → 30%


Future Work

- Continued hardware evaluation and integration of 2-step valve-lift hardware
- Additional experiments on single-cylinder VVA engine at ORNL (leveraged activity with internal funds)
 - GM Ecotec 2.0-L, one cylinder instrumented with Sturman VVA system (other cylinders deactivated) »
 - Custom pistons for step changes in geometric compression ratio **»**
 - Additional experiments to characterize SA-HCCI dynamics **»**
 - Single-cylinder geometry simplifies dynamics by eliminating potential cylinder cross-talk **»**
- Calibration of the SA-HCCI model with data from multi- and single-cylinder engines
- Continued collaboration with LLNL on detailed kinetics models
- Implement and evaluate control strategy for multi-mode operation on multi-cylinder engine

Used with permission of Sturman Industries, Inc

Summary

• Objective

» Develop practical application of HCCI on a production-level gasoline engine for improved fuel efficiency and reduced emissions.

Approach

- » CRADA between ORNL and Delphi.
- » Advanced controls to stabilize SA-HCCI and smooth combustion mode transitions to expand speed-load range.

Technical Accomplishments

- » Demonstrated SI, SA-HCCI, and HCCI on multi-cylinder engine.
- » Completed basic combustion instability model to guide real-time diagnostics and controls.

Technology Transfer

- » Collaborating with Delphi through CRADA.
- » Collaborating with LLNL on development of detailed kinetics model for HCCI and SA-HCCI.
- » US Patent (7,431,011) on control algorithm for multi-mode operation, several publications and presentations.

• Future

- » Install 2-step valve-lift hardware and fully map HCCI domain of engine.
- » Incorporate SA-HCCI combustion model into GT-Power and calibrate with engine data.
- » Implement control strategy to stabilize SA-HCCI operation and smooth combustion mode transitions.

Contacts:

K. Dean Edwards, <u>EdwardsKD@ornl.gov</u>, 865-946-1213 Robert M. Wagner, <u>WagnerRM@ornl.gov</u>, 865-946-1239 Keith Confer, <u>Keith.Confer@delphi.com</u>, 248-836-0439

