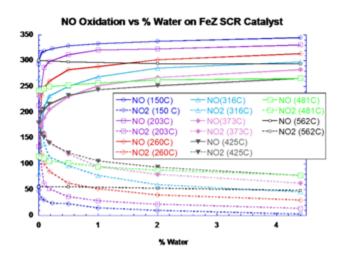
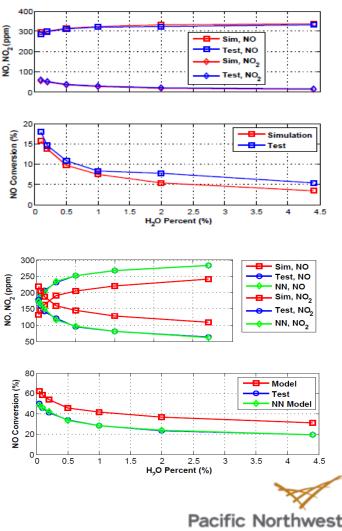
Hydrocarbon Inhibition and HC Storage Modeling in Fe-Zeolite Catalysts for HD Diesel Engines

Maruthi Devarakonda

Institute for Interfacial Catalysis Pacific Northwest National Laboratory


Co-Authors: Russell Tonkyn, Diana Tran and Darrell Herling


Directions in Engine-Efficiency and Emissions Research (DEER) Conference Dearborn, MI., August 5th 2009.

Pacific No

Background

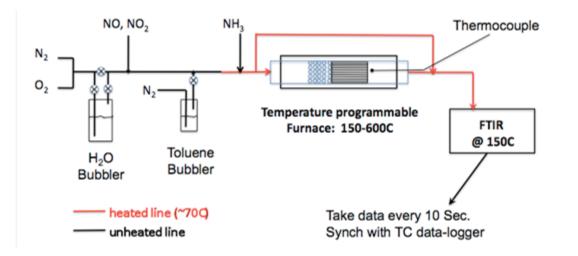
- Research shifting slowly from individual catalytic converters to integrated systems.
- Need to investigate the dynamics between various aftertreatment devices for overall optimal performance to simultaneously reduce NO_x and PM. Ex: HC poisoning/inhibition on zeolites¹, catalyst aging, etc.
- Research activity is also seen in understanding detailed mechanistic pathways of various reactions. Ex: H₂O inhibition of NOx oxidation², NH₄NO₃ and N₂O formation, etc.

NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

¹Pihl et al., NAM Meeting, San Fransisco, CA., June 2009 ²Devarakonda and Tonkyn, Catalysis Letters (Submitted)

2

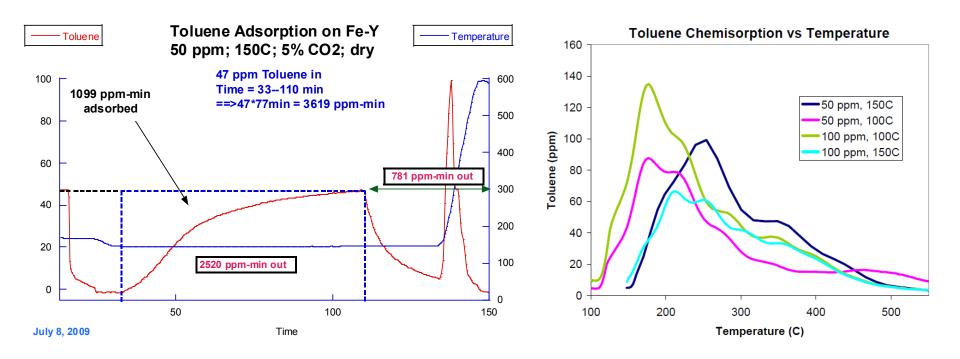

- Toluene Storage Model Development
- Toluene Inhibition of NO Oxidation
- Impact on NO_x & NH₃ Conversion (Steady State)
- Impact on NO_x & NH₃ Conversion (Transient Reactor)
- Conclusions & Future Work

Experimental Set-up

- Catalyst is based on iron zeolite technology (400 cpsi, 0.0065" substrate wall thickness, washcoat loading 160 g/L, SA 77 m²/g, 0.5 % atomic concentration Fe in washcoat)
- Tests conducted on a 9.31 cm³ volume monolith core (1[°] L and 0.85[°] D) at a flow rate of 4.5 slm corresponding to a SV of 29 kh⁻¹.
- Surface isotherm tests similar to our recent work on NH₃ surface characterization¹ are done to investigate toluene adsorption.

Reactor Set-up

Isotherm Test Matrix


T(°C) / C(ppm)	50	100	150
50		Х	Х
100	Х	Х	Х
150	Х	Х	Х

Proudly Operated by Battelle Since 1965

¹Devarakonda, Tonkyn and Male, Chemical Engineering Journal (Submitted)

Multi-site Adsorption of Toluene on Fe-Zeolite

• Adsorption tests show multiple sites on the catalyst where toluene might be chemisorbed (observed during the temperature ramps).

• Need to investigate the number of adsorption sites through fundamental characterization.

Pacific North NATIONAL LABORATORY

Toluene Storage Model (Single Site Kinetics)

Assuming non-activated adsorption rate constant, the adsorption and desorption rate expressions are given by

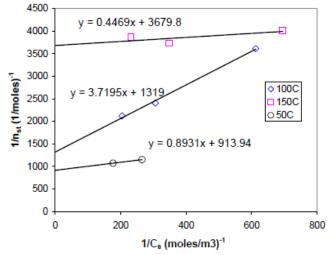
/1

$$r_{ads} = A_{ads} c_{s,C_7H_8} (1 - \theta) N_{total}$$
$$r_{des} = A_{des} e^{-E_{des}/RT} \theta N_{total}$$

Define $\theta = \frac{n_{st}}{N_{total}}$ then

$$r_{ads} = A_{ads} c_{s,C_7H_8} (N_{total} - n_{st})$$
$$r_{des} = A_{des} e^{-E_{des}/RT} n_{st}$$

At equilibrium, $R_{ads} = R_{des}$


$$A_{ads}c_{s,C_7H_8}(N_{total}-n_{st,eq}) = A_{des}e^{-E_{des}/RT}n_{st,eq}$$

Where
$$n_{st,eq}$$
 is the toluene storage at equilibrium.
Toluene storage at equilibrium $(n_{st,eq})$ can be
obtained by integrating the total C_7H_8 entering the
catalyst minus the total C_7H_8 leaving the catalyst
until equilibrium t_{eq} .

$$n_{st,eq} = \int_{0}^{t_{eq}} (n_{C_7H_8,in} - n_{C_7H_8,out}) dt$$

Dividing the above equation by $A_{ads} c_{s,C_7H_8} n_{st,eq} N_{total}$ throughout and rearranging the terms in the equation, we get

$$\frac{1}{n_{st,eq}} = \frac{1}{N_{total}} + \frac{1}{K(T)c_{s,C_7H_8}N_{total}} \quad \text{Where} \quad K(T) = \frac{A_{ads}}{A_{des}e^{-E_{des}/RT}}$$

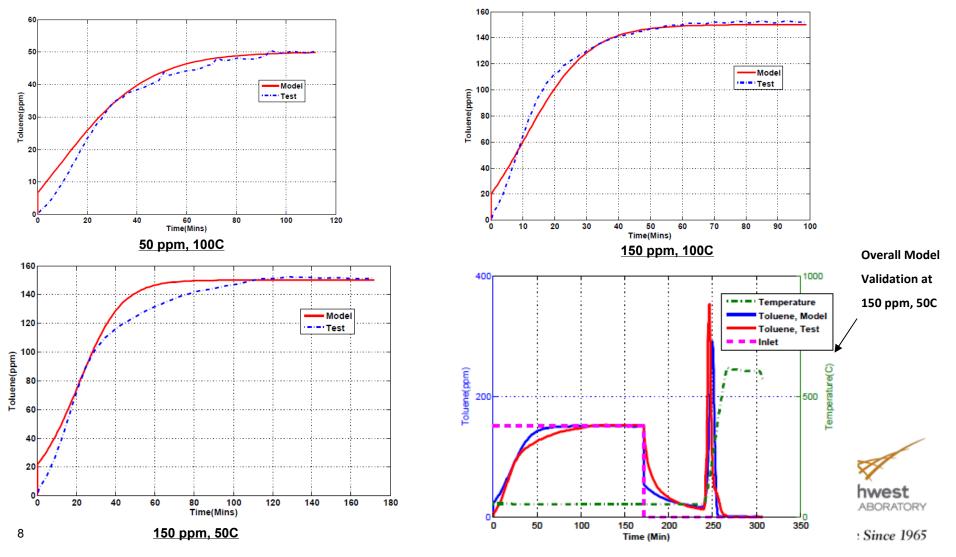
Ω	97.65 mol/m ³
E _{des}	28606 J/mol
A_{ads}/A_{des}	0.029273

Approach followed from ref: C. Sampara (U.Michigan., Ph.D. Dissertation, 2008)

Reactor Model (Single Site Kinetics)

The modeling equations are obtained by solving the gas phase and surface phase concentrations of the species and toluene storage states.

$$\varepsilon \frac{\partial c_{g,i}}{\partial t} = -\varepsilon u \frac{\partial c_{g,i}}{\partial x} - \beta_i A_g (c_{g,i} - c_{s,i})$$
$$(1 - \varepsilon) \frac{\partial c_{s,i}}{\partial t} = \beta_i A_g (c_{g,i} - c_{s,i}) + \sum_j r_{i,j}$$
$$\frac{d\theta}{dt} = \frac{1}{\Omega} (r_{ads} - r_{des})$$


j corresponds to the adsorption and desorption reactions.

- Simulated using a variable step solver ode23tb, a TR-BDF2 algorithm.
- Spatial derivative term approximated by a first order Euler integration scheme.
- A total of 10 tanks (cells or axial increments) are considered in series, each represented by a 'C' s-function and implemented in Matlab/Simulink environment.

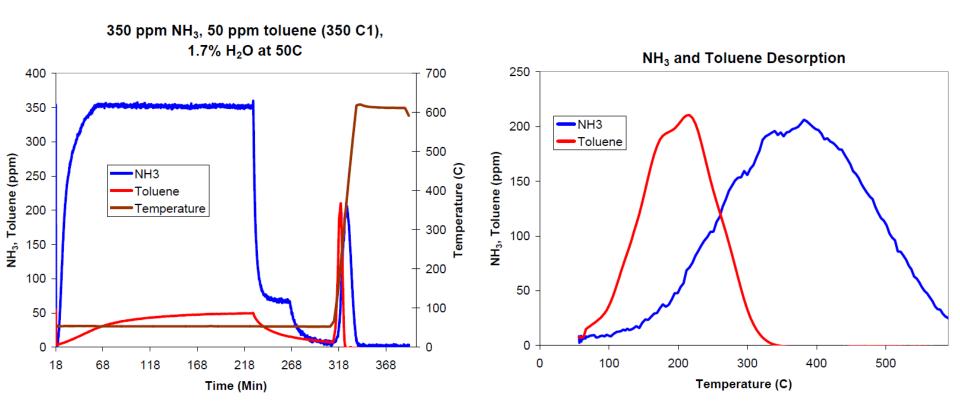
Pacific Nor

Model Validation

- Adsorption parameter (A_{ads}/A_{des}) identified on 100 ppm, 100C test case using the information obtained from Langmuir isotherms.
- The adsorption model is then validated on three other test data sets.

Competitive Adsorption between NH₃ and Toluene (Dry)

50 ppm toluene (350 C1), 350 ppm NH₃ at 50C

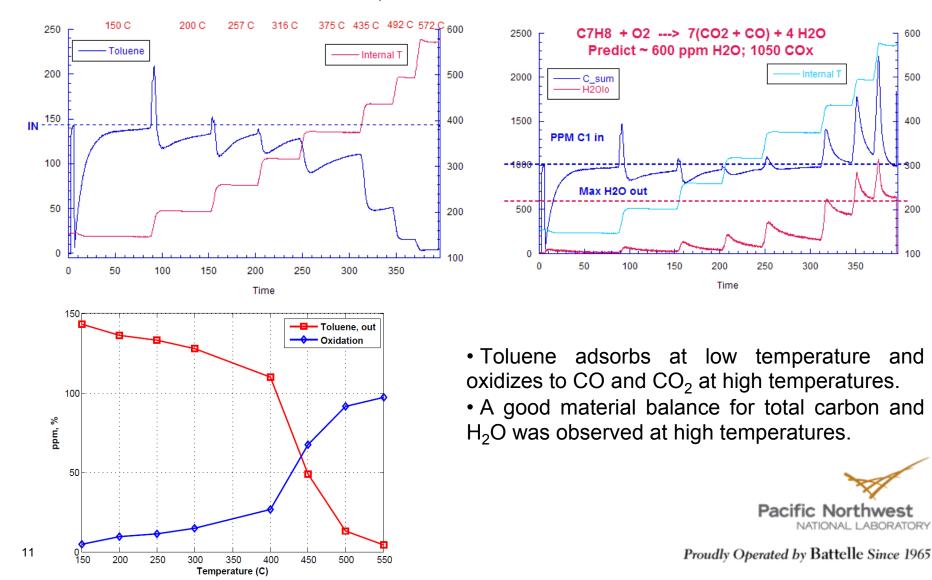

NH₃ and Toluene Desorption NH3 Toluene Temperature Toluene NH₃, Toluene (ppm) NH₃, Toluene (ppm) •NH3 Temperature (C) Temperature (C) Time (Min)

Ammonia and toluene exhibit similar desorption peaks in the absence of H_2O in the stream.

	Injected (ppm-min)	Out (ppm-min)	Absolute Error (%)	Stored (<i>µ</i> -moles)
NH ₃	70000	70099	0.1	1058
Toluene	10000	10259	2.6	666

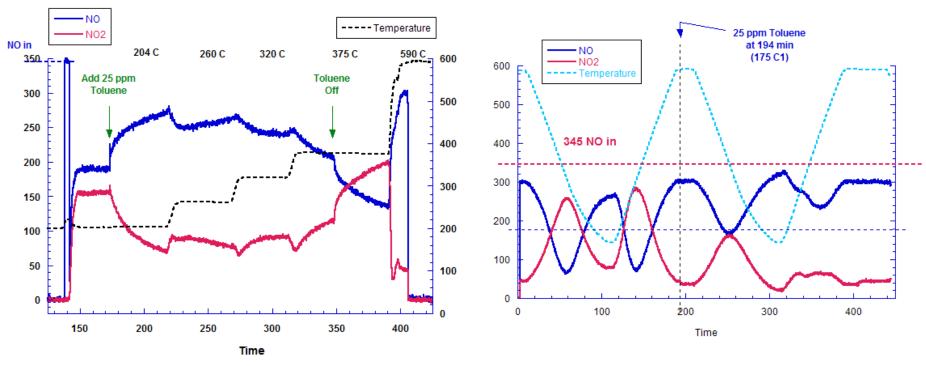
Competitive Adsorption between NH₃ and Toluene (Wet)

• Competition for sites between NH_3 , toluene and H_2O (NH_3 and toluene storage decreases).


- Ammonia sticks to the catalyst in the presence of H_2O and requires high temperatures to desorb completely.

	Injected	Out	Absolute Error	Stored
	(ppm-min)	(ppm-min)	(%)	(μ -moles)
NH ₃	73150	76208	4.2	697
Toluene	10450	10606	1.5	507

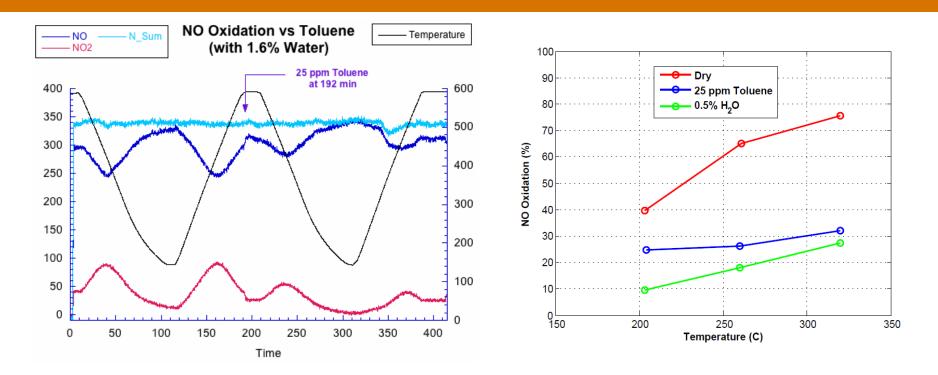
Toluene Oxidation


• 150 ppm of toluene and 14% O_{2} , balance N_{2} introduced to reactor at 4.5 slm.

Toluene Inhibition of NO Oxidation (Dry)

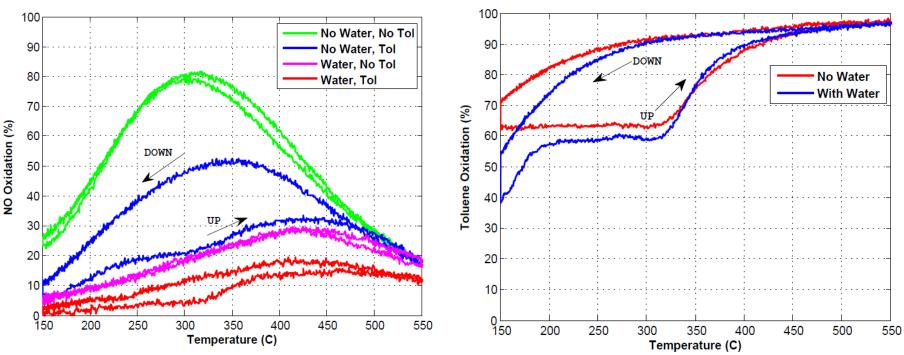
Step Temperature Test

Periodic Temperature Ramp Test



• NO oxidation as a function of temperature without and with toluene shows noticeable inhibition effects of toluene.

• Toluene inhibits oxidation of NO without prior storage on the down ramp and shows a greater inhibition on the up ramp due to storage.


Toluene Inhibition of NO Oxidation (Wet)

A comparison of NO oxidation for the dry, 25 ppm of toluene and 0.5% H_2O as a function of temperature indicates that 0.5% H_2O inhibits NO oxidation more than 25 ppm toluene at low temperatures but the effects are comparable at higher temperatures.

Toluene Inhibition increases in the presence of H₂O!!

NO Oxidation vs Temperature

Toluene Oxidation vs Temperature

• Water displaces toluene from the active sites and hence less toluene oxidation in the presence of water at lower temperatures (T < 300C).

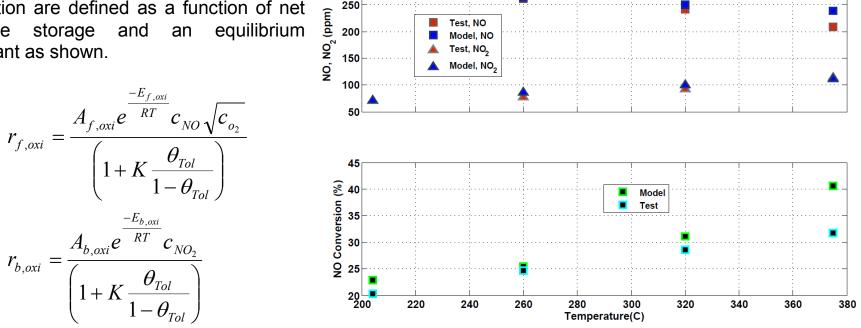
• Water also inhibits NO oxidation and therefore the cumulative inhibition of NO oxidation by toluene and water is extreme.

Pacific Northwest

Proudly Operated by Battelle Since 1965

Tonkyn, Devarakonda and Tran, Manuscript in Preparation.

A Model for Toluene Inhibition of NO Oxidation

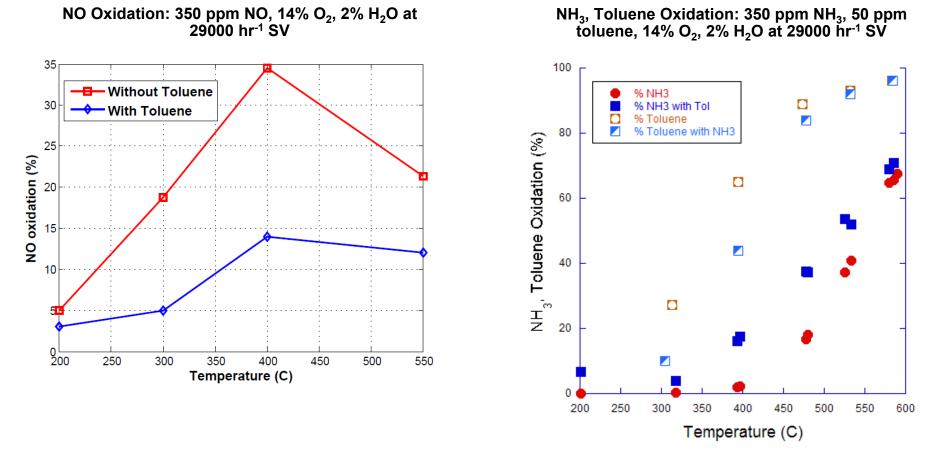

• Following the recently developed water inhibition model for NO oxidation¹, a model to predict toluene inhibition of NO oxidation under dry conditions is developed.

• Rate parameters for NO oxidation and NO₂ dissociation are taken from Olsson et al².

300

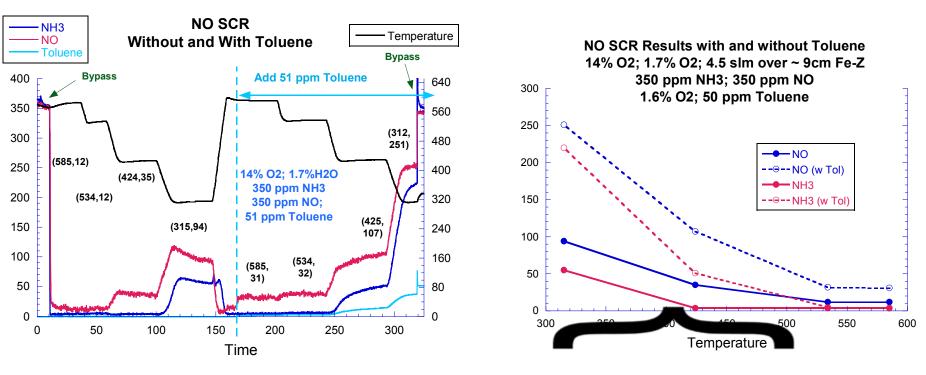
250

The kinetic rates of NO oxidation and NO₂ reduction are defined as a function of net equilibrium storage and an toluene constant as shown.

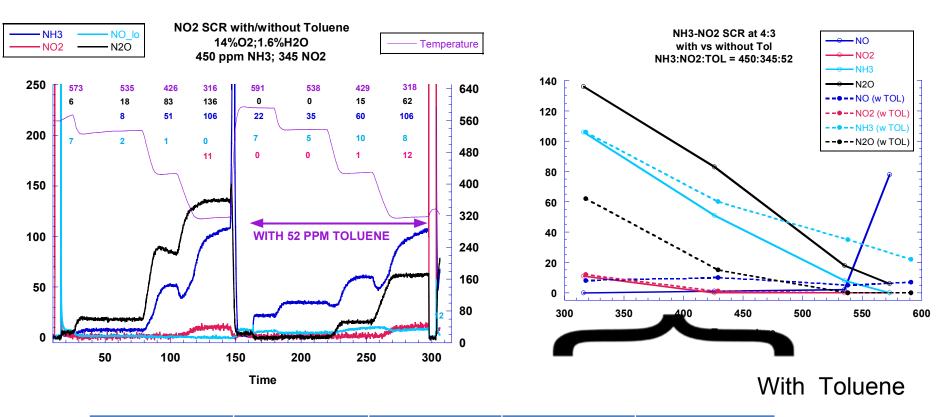


Test, NO

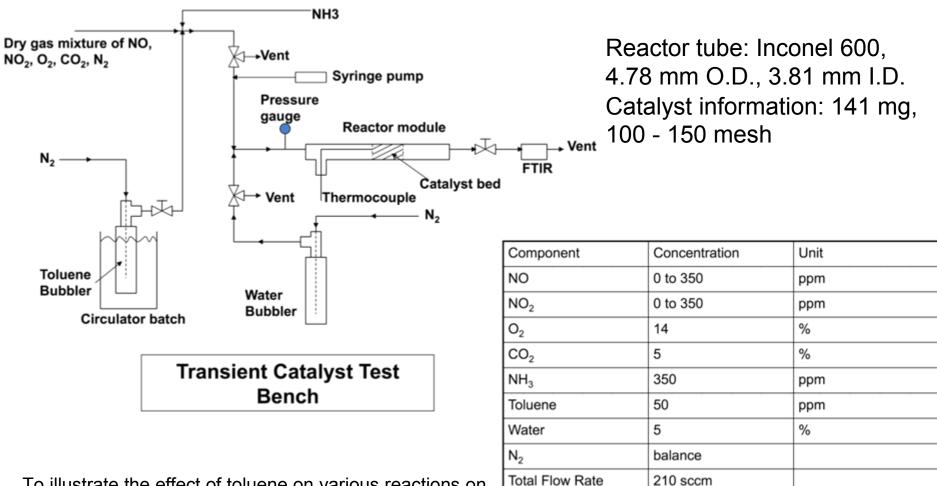
¹Devarakonda and Tonkyn, Catalysis Letters (Submitted). 15 ²L. Olsson, H. Sjovall and R. Blint, App Cat B: Environmental, 87, 2009, 200-210.


Toluene Effect – NO oxidation & NH₃ Oxidation

- NH_3 oxidation is higher in the presence of toluene at all temperatures.
- Toluene helps NH₃ oxidation and NH₃ hurts toluene oxidation.



Toluene Effect: Standard SCR

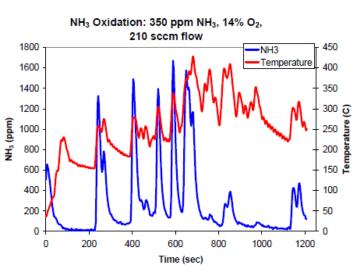

Temperature (C)	NOx Conv (%)	NH3 Conv (%)	NOx Conv (%)	NH3 Conv (%)	/ith Toluene
315	73	84	28	37	
424	90	99	69	85	
535	97	99	91	99	
585	97	99	91	99	NATIONAL LABORATORY

Toluene Effect: NO₂- SCR (4:3 NH₃: NO₂)

Temperature (C)	NOx Conv (%)	NH3 Conv (%)	NOx Conv (%)	NH3 Conv (%)	
318	97	76	93	76	
429	96	89	95	87	
538	99	98	97	92	
591	97	100	97	95	ed by Battelle Since 1965

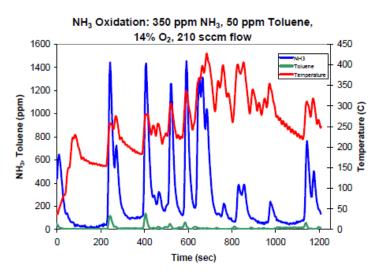
Tests on Thermal Transient Micro-Reactor

To illustrate the effect of toluene on various reactions on the urea-SCR catalyst, average NO_x and NH_3 conversion efficiencies were calculated for each data

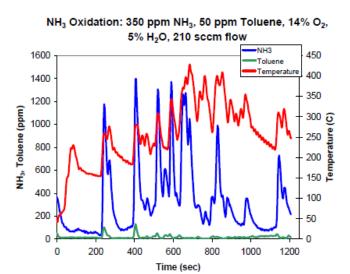


Proudly Operated by Battelle Since 1965

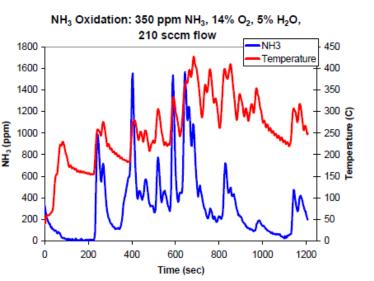
₁₉ set.


Toluene Effect – NH₃ Oxidation (Transient)

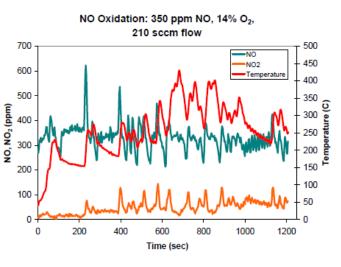
NH₃ Oxidation (dry) – Without Toluene

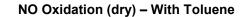


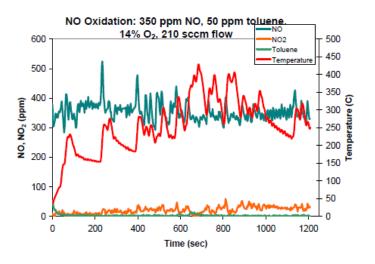
Case%
OxidizedWithout
Toluene25With
Toluene23


NH₃ Oxidation (dry) – With Toluene

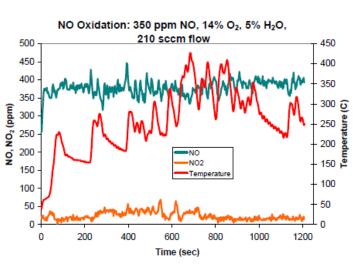
NH₃ Oxidation (wet) – With Toluene


NH₃ Oxidation (wet) – Without Toluene

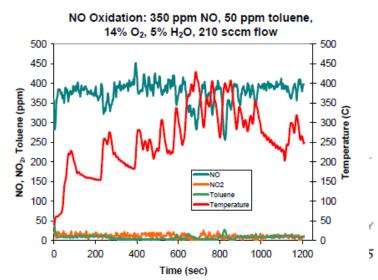

Case	% Oxidized
Without Toluene	11
With Toluene	7


Toluene Effect – NO Oxidation (Transient)

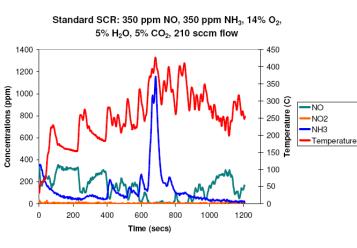
NO Oxidation (dry) – Without Toluene



	1
Case	% Oxidized
Without Toluene	14
With Toluene	10

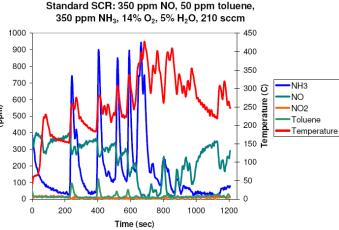


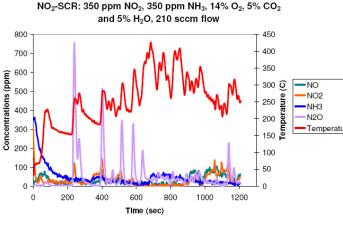
NO Oxidation (wet) – Without Toluene


Case	% Oxidized
Without Toluene	3
With Toluene	1

NO Oxidation (wet) – With Toluene

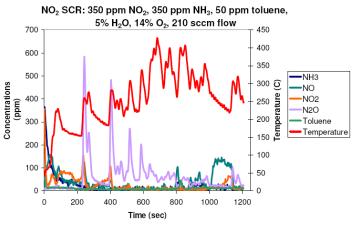
Toluene Effect: SCR Reactions (Transient)


Standard SCR (Without Toluene)


Standard SCRCaseNH3NOx

-		(%)	(%)	tions
-	Without Toluen e	63	54	Concentrations (ppm)
	With Toluen e	52	37	

Standard SCR (With Toluene)



NO₂-SCR (Without Toluene)

	NO ₂ - SCR				
	Case	NH ₃ (%)	NO _x (%)		
ure	Without Toluen e	86	81		
	With Toluen e	93	82		

NO₂-SCR (With Toluene)

Toluene Effect: Fast SCR (Transient)

Conclusions

- \checkmark Adsorption tests reveal that toluene is adsorbed on multiple sites on the catalyst.
- Designing Langmuir isotherms is a promising approach to characterize the toluene adsorption-desorption characteristics.
- ✓ A single site model shows a reasonably good match with the test data. Multi-site kinetic model is being developed and will be updated in future reports.
- ✓ Competitive adsorption tests indicate that NH_3 sticks to the catalyst in the presence of H_2O .
- ✓ Step temperature and periodic temperature ramp tests in the absence of H_2O indicate heavy toluene inhibition of NO oxidation at low temperatures.
- ✓ A simple model developed to predict toluene inhibition of NO oxidation, showed good agreement with the test data.
- \checkmark NH₃ oxidation is higher in the presence of toluene.
- ✓ Toluene has a strong, negative effect on NOx conversion during NH₃-SCR. NO_x conversion decreases at all temperatures during standard-SCR, with significant toluene effect at low temperatures. Lesser N₂O formation during NO₂-SCR.
- Transient tests on Fe-Z micro-reactor reveal toluene impact on NO_x conversion.
 Pacific Northwest
 NATIONAL LABORATOR

Future Work

- Model toluene inhibition effect on various SCR reactions, both from a steady state and transient cycle perspective.
- > Model competitive adsorption between various species (H_2O , toluene and NH_3) on the catalyst.
- Investigate catalyst deactivation mechanisms due to hydrocarbon poisoning.
- Develop a mathematical tool to compare NO_x/NH₃ conversion efficiencies from transient cycle as a function of temperature to its steady state performance.

Acknowledgments

- Todd Toops, Josh Pihl and Stuart Daw (ORNL)
- CLEERS
- Ken Howden and Gurpreet Singh (DOE-OVT)

U.S. Department of Energy Energy Efficiency and Renewable Energy

