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Advanced Diesel Engine Combustion Techniques 
Present Different Emissions Challenges 
Conventional Diesel Combustion 

Premixed Charge Compression Ignition (PCCI) Diesel Combustion 
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PCCI reduces burden of NOx and PM control on aftertreatment (thereby 
reducing cost and fuel penalty), but higher CO and HC emissions result 
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Objective  

• The goal of this study is to investigate the effect of HC emissions from 
conventional and advanced combustion modes on the performance of 
the Fe- and Cu-zeolite SCRs 

 
» Catalyst cores were exposed to a raw 

engine exhaust from conventional and 
PCCI combustion on slipstream setup 
• Cu-zeolite SCR 

• Fe-zeolite SCR 

» Exposed samples were characterized 
on bench flow reactor 
• SCR performance measured before and 

after temperature ramp (oxidizing 
conditions) 

» HC were extracted and analyzed by 
GC-MS 
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Catalyst cores were exposed to a raw engine exhaust 
from conventional and PCCI combustion on slipstream 
• 1.9-liter 4-cylinder GM CIDI 

» Variable geometry turbocharger 
» High pressure common rail 
» Cooled high-pressure EGR 
» Full-pass Drivven engine control system 

• 1x3 inch sample cores cut from a catalyst brick 
were hydrothermally degreened in a laboratory 
furnace for 12hr 

» Cu-zeolite SCR from 2010 Ford F-series exhaust 
system 

» Fe-zeolite SCR donated by Umicore Autocat USA 
(CLEERS reference SCR) 

• Catalyst cores were exposed to a raw engine 
exhaust from conventional or PCCI combustion 

» Aggressive conditions: 3 hours, 115°C, 30k 1/hr SV (via 
Vacuum Pump and 0.063 in. orifice), no DOC/DPF 
upstream 
 

 

Conventional PCCI 

Engine Out NOX 1.02 g/bhp-hr 0.24 g/bhp-hr 

Engine Out HC 1.35 g/bhp-hr 2.19 g/bhp-hr 

Engine Out CO 3.12 g/bhp-hr 11.70 g/bhp-hr 

Engine Condition: 1500 rpm, 2.6 bar BMEP 

Schematic of engine 
exhaust slipstream for 
catalyst exposure to 
hydrocarbons 
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HC were extracted and analyzed by GC-MS 

• Hydrocarbons were extracted from a 
loaded sample using 50/50 
hexane/acetone solution in a 
microwave-assisted extractor 
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• Extracts were concentrated, spiked with 
an internal standard, and then analyzed 
by GC-MS 

» Diesel range organic components 
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Shift to lighter, more volatile HCs in PCCI 

• Surface HC are different 
between conventional and 
PCCI combustion modes 

» More HC from PCCI exposure 
(consistent with CO+CO2 release 
results) 

» Shift to lighter, more volatile HC 
in PCCI 

• No apparent difference is 
observed between Cu- and Fe-
SCR 

HC (paraffins) distribution 
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DRIFTS analysis shows distribution of HCs along catalyst 
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DRIFTS  

HC species as function of position along flow axis 

• DRIFTS detects HC variation along length of catalyst 
» DRIFTS=Diffuse Reflectance Infrared Fourier Transform Spectroscopy  

• Under current exposure parameters, HCs observed along entire catalyst length 
» Qualitative distribution of HCs may be useful for modeling of HC fouling effects 
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SCR performance was characterized on a bench flow reactor 

• Bench flow reactor conditions 
» Inlet: 350 ppm NOX + 350 ppm NH3, 14% O2, 4.5% H2O, SV=30K 1/hr 
» Temperature Ramp: 5°C/min, 150-600°C 

• Ramp1: exposed sample (straight from the engine with adsorbed HCs 
and soot) 

• Ramp2: cleaned sample (cool sample back to 150°C after Ramp1 and 
repeat ramp) 

» Gas analysis with MKS FTIR 

Ramp1: Cu-SCR exposed to conventional combustion exhaust 
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Cu-zeolite shows more tolerance to HC fouling (vs. Fe-), but 
fouling from PCCI HCs more severe (for Cu- case) 
• HC/soot fouling impacts mainly low 

temperature NOx conversion 
» Fe much worse than Cu as expected 
» PCCI and Conventional similar for Fe 
» PCCI worse than Conventional for Cu 

• Performance loss reversible via 
higher temperature exposure  
(see “Cleaned” data plots) 

Conventional PCCI 

Engine Out NOx 1.02 g/bhp-hr 0.24 g/bhp-hr 

Engine Out HC 1.35 g/bhp-hr 2.19 g/bhp-hr 

Engine Out CO 3.12 g/bhp-hr 11.70 g/bhp-hr 

Engine Condition: 1500 rpm, 2.6 bar BMEP 
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Bench Flow Reactor Conditions: 
Inlet: 350 ppm NOx + 350 ppm NH3 (ANR=1) 
SV=30k/hr, 14% O2, 4.5% H2O 
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Oxidation and Release of HCs differs for Cu- and Fe-SCR 

• During temperature ramp, 
HCs, CO, and CO2 are 
released by SCR catalysts 

• More C species on surface 
of Fe-zeolite sample  

• More C for PCCI than 
conventional 

• Prominent low temperature 
CO+CO2 peak for Cu-zeolite 

• Much more HC on Fe-zeolite 

 

C species release during temperature 
ramp 

Cu Conv 
Cu PCCI 
Fe Conv 
Fe PCCI 

Cu Conv 
Cu PCCI 
Fe Conv 
Fe PCCI 
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Oxidation and Release of HCs differs for Cu- and Fe-SCR 

• Integrated results for total 
moles of HC and CO+CO2 
show differences due 
catalyst formulation and 
combustion type 

» More total C trapped on Fe-zeolite 
» More total C trapped during  PCCI 

(vs. Conventional) 

• Larger difference in C 
released from PCCI and 
Conventional for Cu SCR 

» Note that PCCI has higher HC 
emissions (same exposure time) 

» C release results consistent with 
NOX performance results 
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NH3 storage is not affected by stored HC  
NH3 stored during stabilization step (prior to ramp) 

 

  

Cu-SCR Fe-SCR 

• Integrated results for total 
moles of NH3 stored during 
stabilization step (prior to 
ramp) does not appear to be 
affected by HC+Soot 
present of the surface of the 
catalyst 

» More NH3 stored on Cu-SCR 
as expected 
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Standard SCR Reaction Impacted More by Fouling 

• Measured steady state NOx 
conversions for “standard” and 
“fast” SCR reactions: 
» Standard:  
» 4NH3 + 4NO + O2 → 4N2 + 6H2O 

» Fast:  
» 4NH3 + 2NO + 2NO2 → 4N2 + 6H2O 

• At 200 C, fouling by PCCI exhaust:  
» reduced standard  SCR NOx 

conversion 
» had no impact on fast SCR activity 

• For temperatures 250 C and above, 
hydrocarbons desorbed and did 
affect SCR performance 

Steady state SCR NOx conversions at 200 C 
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Conclusions 
• Reversible HC fouling was observed on Cu- and Fe-SCR 

» Aggressive HC conditions based on low exhaust temperature exposure 

• At low temperatures Cu-zeolite shows more tolerance to HC fouling 
compared to Fe-zeolite (as expected) 

• Higher HC levels from PCCI led to more fouling of low temperature 
performance 

» HC fouling effect differences between conventional and PCCI combustion HCs 
were more noticeable on Cu-zeolite catalyst 

• HC chemistry extracted from SCR cores shows lower molecular weight 
HCs on SCR from PCCI exhaust exposure (vs. diesel-like HCs form 
conventional exhaust) 

• No effect from HC fouling on NH3 storage capacity was observed  

• The standard SCR reaction (NO only) was impacted by fouling more 
than the fast (NO+NO2) SCR reaction 
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