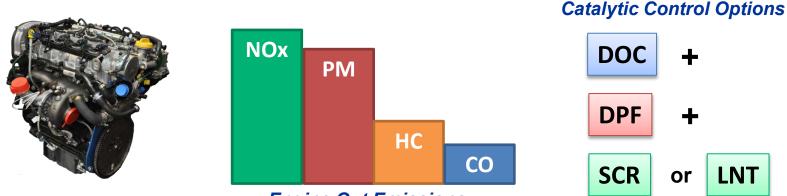
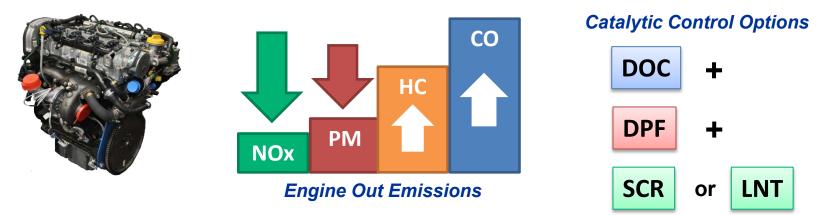
Hydrocarbon fouling of SCR during Premixed Charge Compression Ignition (PCCI) combustion

Jim Parks, Vitaly Prikhodko, Josh Pihl, and Sam Lewis *Oak Ridge National Laboratory*

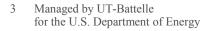
DEER 2011 October 3-6, 2011 Detroit, MI


Acknowledgements

- Thanks to U.S. DOE's Vehicle Technologies Program for funding this study
 - » Program Managers: Gurpreet Singh and Ken Howden


Advanced Diesel Engine Combustion Techniques Present Different Emissions Challenges

Conventional Diesel Combustion



Engine Out Emissions

Premixed Charge Compression Ignition (PCCI) Diesel Combustion

PCCI reduces burden of NOx and PM control on aftertreatment (thereby reducing cost and fuel penalty), but higher CO and HC emissions result

Objective

- The goal of this study is to investigate the effect of HC emissions from conventional and advanced combustion modes on the performance of the Fe- and Cu-zeolite SCRs **Catalysts Fouled in Engine Exhaust**
 - Catalyst cores were exposed to a raw **》** engine exhaust from conventional and PCCI combustion on slipstream setup
 - Cu-zeolite SCR
 - Fe-zeolite SCR
 - Exposed samples were characterized **》** on bench flow reactor
 - SCR performance measured before and after temperature ramp (oxidizing conditions)
 - HC were extracted and analyzed by **》** GC-MS

Performance Studied on **Bench Reactor**

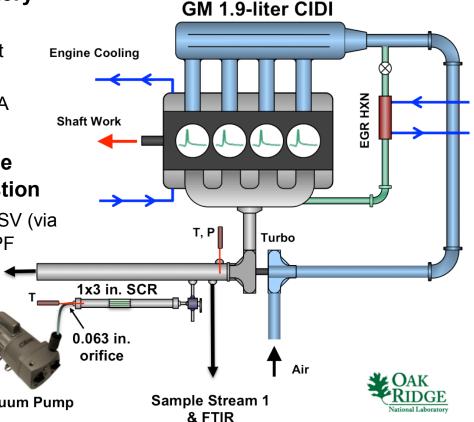
Extracted HC analyzed

by GC-MS

Catalyst cores were exposed to a raw engine exhaust from conventional and PCCI combustion on slipstream

1.9-liter 4-cylinder GM CIDI

- Variable geometry turbocharger »
- High pressure common rail **>>**
- Cooled high-pressure EGR **》**
- Full-pass Drivven engine control system **》**
- 1x3 inch sample cores cut from a catalyst brick were hydrothermally degreened in a laboratory furnace for 12hr
 - Cu-zeolite SCR from 2010 Ford F-series exhaust » system
 - Fe-zeolite SCR donated by Umicore Autocat USA **》** (CLEERS reference SCR)
- Catalyst cores were exposed to a raw engine exhaust from conventional or PCCI combustion
 - Aggressive conditions: 3 hours, 115°C, 30k 1/hr SV (via » Vacuum Pump and 0.063 in. orifice), no DOC/DPF upstream Exhaust

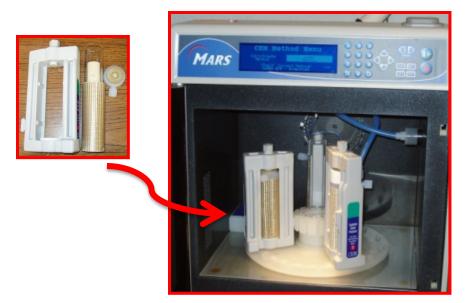

Schematic of engine exhaust slipstream for

catalyst exposure to

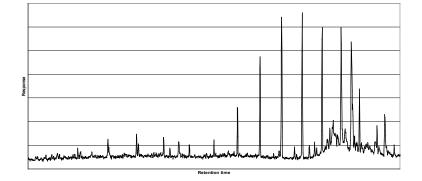
hydrocarbons

Engine Condition: 1500 rpm, 2.6 bar BMEP

	Conventional	PCCI
Engine Out NO _x	1.02 g/bhp-hr	0.24 g/bhp-hr
Engine Out HC	1.35 g/bhp-hr	2.19 g/bhp-hr
Engine Out CO	3.12 g/bhp-hr	11.70 g/bhp-hr

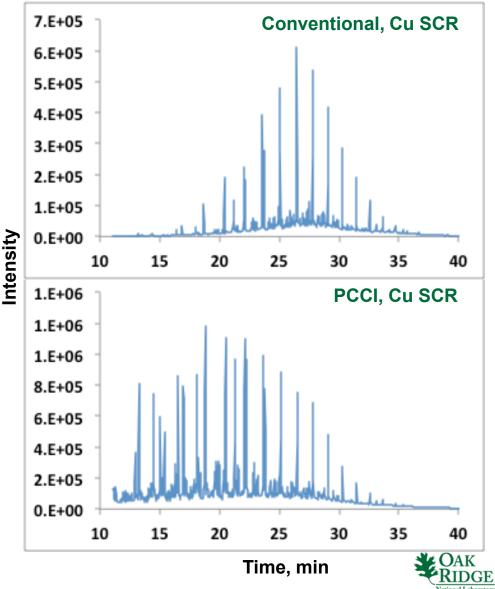


Managed by UT-Battelle for the U.S. Department of Energy

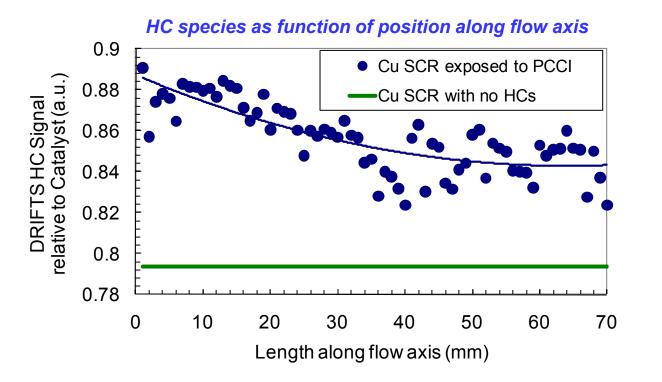

Vacuum Pump

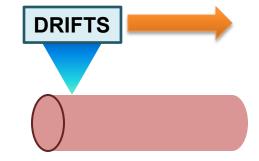
HC were extracted and analyzed by GC-MS

 Hydrocarbons were extracted from a loaded sample using 50/50 hexane/acetone solution in a microwave-assisted extractor


- Extracts were concentrated, spiked with an internal standard, and then analyzed by GC-MS
 - » Diesel range organic components

Shift to lighter, more volatile HCs in PCCI

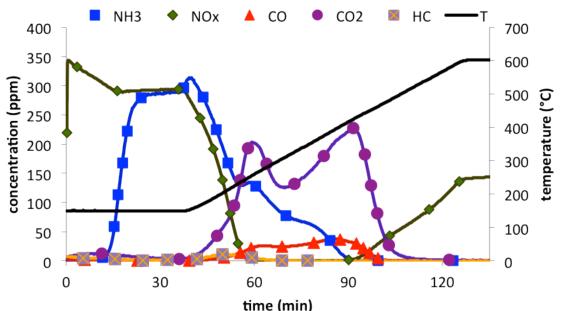

- Surface HC are different between conventional and PCCI combustion modes
 - More HC from PCCI exposure (consistent with CO+CO₂ release results)
 - » Shift to lighter, more volatile HC in PCCI
- No apparent difference is observed between Cu- and Fe-SCR



HC (paraffins) distribution

DRIFTS analysis shows distribution of HCs along catalyst

- DRIFTS detects HC variation along length of catalyst
 - » DRIFTS=Diffuse Reflectance Infrared Fourier Transform Spectroscopy
- Under current exposure parameters, HCs observed along entire catalyst length
 - » Qualitative distribution of HCs may be useful for modeling of HC fouling effects



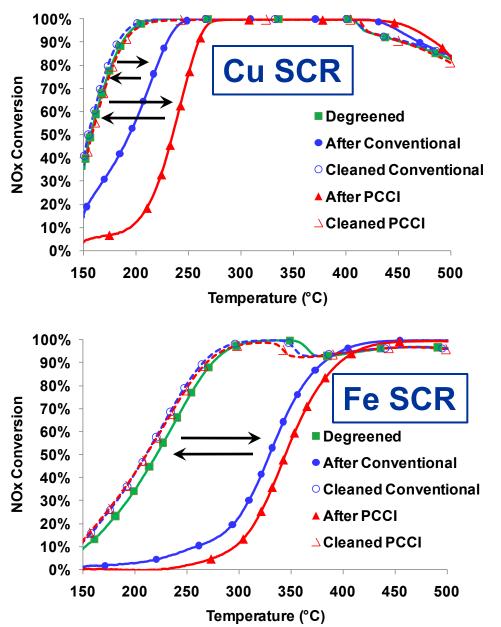
SCR performance was characterized on a bench flow reactor

Bench flow reactor conditions

- » Inlet: 350 ppm NO_X + 350 ppm NH₃, 14% O₂, 4.5% H₂O, SV=30K 1/hr
- » Temperature Ramp: 5°C/min, 150-600°C
 - Ramp1: exposed sample (straight from the engine with adsorbed HCs and soot)
 - Ramp2: cleaned sample (cool sample back to 150°C after Ramp1 and repeat ramp)
- » Gas analysis with MKS FTIR

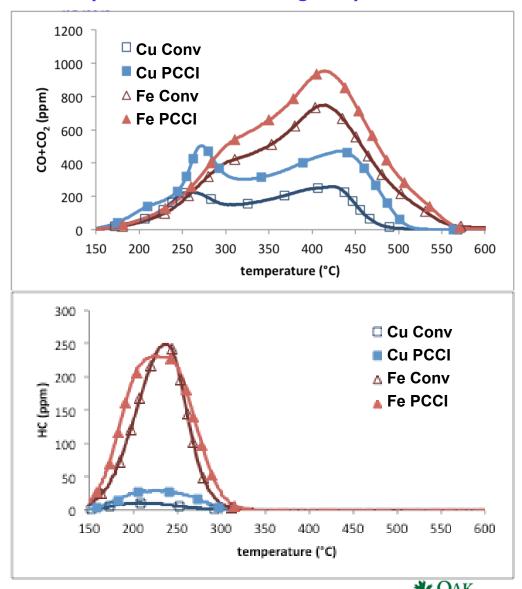
Ramp1: Cu-SCR exposed to conventional combustion exhaust

9 Managed by UT-Battelle for the U.S. Department of Energy


Cu-zeolite shows more tolerance to HC fouling (vs. Fe-), but fouling from PCCI HCs more severe (for Cu- case)

- HC/soot fouling impacts mainly low temperature NOx conversion
 - » Fe much worse than Cu as expected
 - » PCCI and Conventional similar for Fe
 - » PCCI worse than Conventional for Cu
- Performance loss reversible via higher temperature exposure (see "Cleaned" data plots)

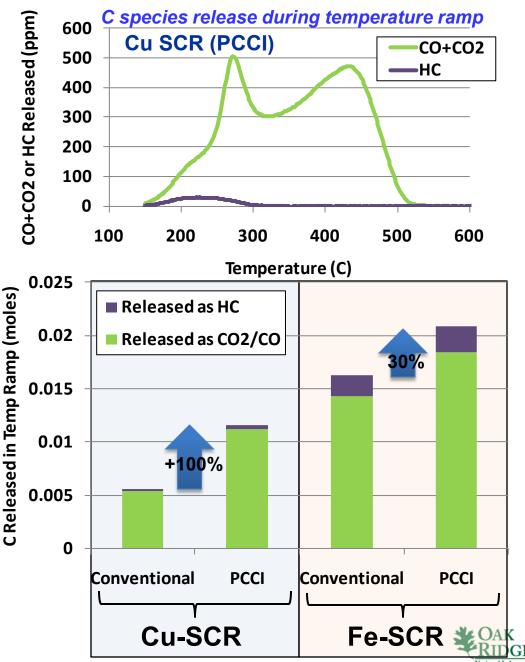
Engine Condition: 1500 rpm, 2.6 bar BMEP


	Conventional	PCCI
Engine Out NOx	1.02 g/bhp-hr	0.24 g/bhp-hr
Engine Out HC	1.35 g/bhp-hr	2.19 g/bhp-hr
Engine Out CO	3.12 g/bhp-hr	11.70 g/bhp-hr

Bench Flow Reactor Conditions: Inlet: 350 ppm NOx + 350 ppm NH₃ (ANR=1) SV=30k/hr, 14% O₂, 4.5% H₂O

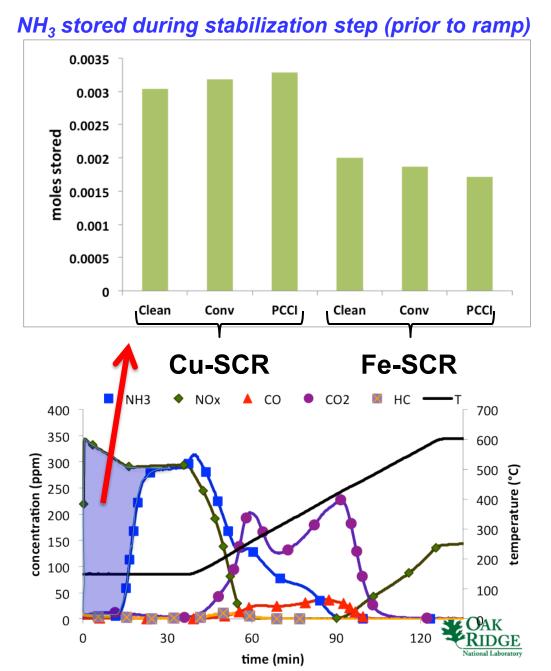
Oxidation and Release of HCs differs for Cu- and Fe-SCR

- During temperature ramp, HCs, CO, and CO₂ are released by SCR catalysts
- More C species on surface of Fe-zeolite sample
- More C for PCCI than conventional
- Prominent low temperature CO+CO₂ peak for Cu-zeolite
- Much more HC on Fe-zeolite

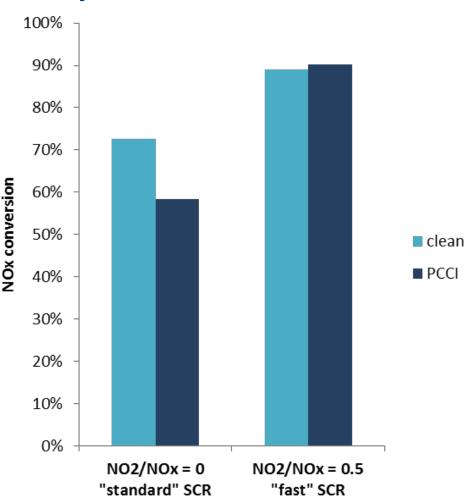

C species release during temperature

Oxidation and Release of HCs differs for Cu- and Fe-SCR

- Integrated results for total moles of HC and CO+CO₂ show differences due catalyst formulation and combustion type
 - » More total C trapped on Fe-zeolite
 - » More total C trapped during PCCI (vs. Conventional)


Larger difference in C released from PCCI and Conventional for Cu SCR

- Note that PCCI has higher HC emissions (same exposure time)
- » C release results consistent with NO_X performance results


NH₃ storage is not affected by stored HC

- Integrated results for total moles of NH₃ stored during stabilization step (prior to ramp) does not appear to be affected by HC+Soot present of the surface of the catalyst
 - » More NH₃ stored on Cu-SCR as expected

Standard SCR Reaction Impacted More by Fouling

- Measured steady state NOx conversions for "standard" and "fast" SCR reactions:
 - » Standard:
 - » $4NH_3 + 4NO + O_2 \rightarrow 4N_2 + 6H_2O$
 - » <u>Fast:</u>
 - » $4NH_3 + 2NO + 2NO_2 \rightarrow 4N_2 + 6H_2O$
- At 200 C, fouling by PCCI exhaust:
 - » reduced standard SCR NOx conversion
 - » had no impact on fast SCR activity
- For temperatures 250 C and above, hydrocarbons desorbed and did affect SCR performance

Steady state SCR NOx conversions at 200 C

Conclusions

- Reversible HC fouling was observed on Cu- and Fe-SCR
 - Aggressive HC conditions based on low exhaust temperature exposure
- At low temperatures Cu-zeolite shows more tolerance to HC fouling compared to Fe-zeolite (as expected)
- Higher HC levels from PCCI led to more fouling of low temperature performance
 - » HC fouling effect differences between conventional and PCCI combustion HCs were more noticeable on Cu-zeolite catalyst
- HC chemistry extracted from SCR cores shows lower molecular weight HCs on SCR from PCCI exhaust exposure (vs. diesel-like HCs form conventional exhaust)
- No effect from HC fouling on NH₃ storage capacity was observed
- The standard SCR reaction (NO only) was impacted by fouling more than the fast (NO+NO₂) SCR reaction

