Hybrid Nano Carbon Fiber/Graphene Platelet-Based High-Capacity Anodes for Lithium Ion Batteries

PI: Aruna Zhamu, Ph.D. Presenter: Bor Z Jang, Ph.D.

Organization: Angstron Materials, Inc Date: March 15, 2011

Project ID: ES009

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Award Number: **DE-EE0001219** DE-PS26-08NT01045-02, Subtopic 1

Overview

Timeline

- Project start: Sept. 15, 2009
- Project end: Sept. 14, 2012
- Percent complete: 60%

Budget

- Total project funding DOE share: \$1,594,303 Contractor share: \$1,603,937
- Funding received in FY10: \$671,057
- Funding for FY11: \$485,103

Barriers

- Barriers addressed (Current Li-ion cells)
 - > A: High production cost;
 - B: Low capacity and short cycle life;
 - **C:** Si pulverization.
- Targets

5			
	2010	2011	2012
Anode Specific capacity	650 (mAh/g)	1000 (mAh/g)	1000 (mAh/g)
Others	50 cycles (1C), < 20% capacity fade	750 cycles, ~70% SOC swing, < 20% of capacity fade	Demonstration cells
Cell status	Button cell	18650 cell	18650 cell

Partners

- K2 Energy Solutions, Inc.,-- Cell evaluation
- Nanotek Instruments, Inc.,-- CNFs

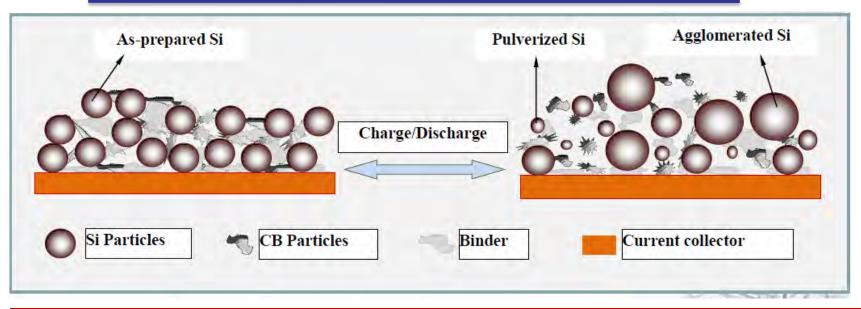
To develop and commercialize next generation of high-energy density anode materials for Li-ion batteries (Si-NGP/CNF hybrid materials)

<u>Phase 1: Applied Research (Prior to Proposal Submission):</u> Demonstrated the technical feasibility of new high-energy anode materials— Si nano coating/particles supported by a 3-D network (mat) of nano graphene platelets (NGP)/carbon nano-fibers (CNF).

Phase 2: Technology Development (This project)

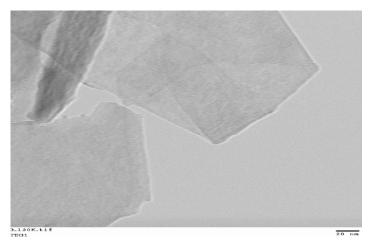
- Determine the optimized Si-NGP/CNF blends (hybrids) that exhibit the best performance/cost ratios.
- Develop the process technology for cost-effective production of Si-NGP/CNF blends

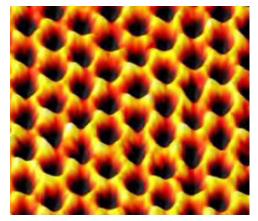
Phase 3: Technology Validation


Produce high-energy anode materials and initiate a marketing program for their distribution.

Approach

Prevent Si pulverization ?

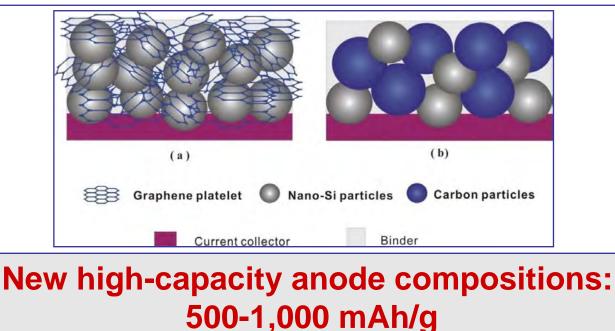

Conventional Approaches:


- Reducing the size of active materials:
 - Ultra-thin film;
 - Using nano particles to reduce the volume change-induced strain energy during cycling;
- Adding a cushioning material to offset the volume change of the active material.

Approach: Using NGP as a supportive/protective substrate Nano graphene platelets (NGPs)

A 2-D honeycomb structure of carbon atoms as thin as one carbon atom (< 0.34 nm)

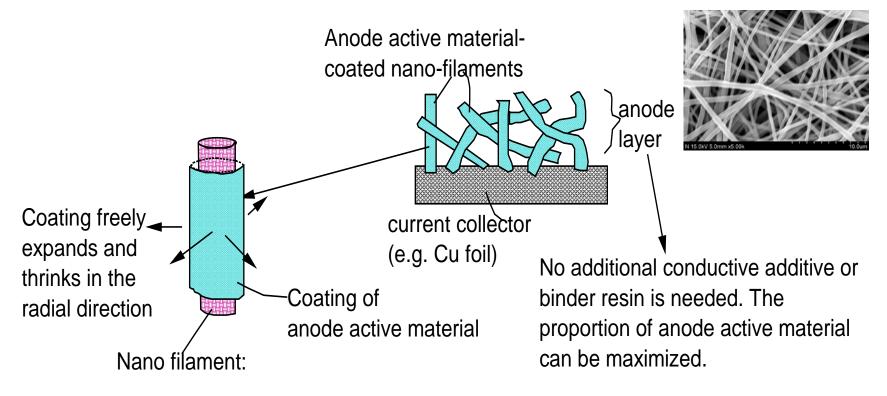
(Image courtesy of DOE/Lawrence Berkeley National Laboratory)


- Ultra-high Young's modulus (1,000 GPa)
- Highest intrinsic strength (up to ~ 130 GPa).
- Exceptional in-plane electrical conductivity (up to ~ 20,000 S/cm).
- Highest thermal conductivity (up to ~ 5,300 W/(mK)).
- High specific surface area (up to ~ 2,675 m²/g).

Approach

Functions of NGPs?

- Increased electrode conductivity due to a percolated graphene network;
- Dimensional confinement of Si by the surrounding graphene sheets limits the volume expansion upon lithium insertion;
- Si/graphene or SnO_2 /graphene form a stable 3D architecture.
- Graphene sheets prevent aggregation of nanoparticles during the charge/discharge process.



Approach

Functions of CNFs?

- Impart structural integrity to the 3-D net (mat or paper)
- Provide a geometry that enables Si to freely expand and shrink in the radial direction

Table 2: Tasks and Milestones. Notes:

Tasks	Metrics		
Task 2.0: Project Management & Planning	M1: Project plan finalized		
Phase II Task 2: Development and Optimization of Anode Materials • 100% completed • >50% completed	M2: (1) Optimal anode material properties identified; (2) For the small cells (75 mAh), achieve specific capacities of 650mAh/g, 50 cycles at the 1C rate with < 20% capacity fade, Si coating weigh percentage ~ 15; (3) For the 18650 or larger format cells, achieve specific capacities of 1000 mAh/g, 750 cycles of ~70% state of charge (SOC) swing with less than 20% capacity fade; Si coating weight fraction ~ 30%. M3: Ability to cost-effectively & consistently manufacture Si-coated nano filaments: (1) scaled up slurry molding technique for mass-producing preforms; (2) a uniform Si coating with thickness 50nm ~500nm, produced by CVD; (3) Optimized parameters of dynimic-CVD, including wire temperature, total pressure, gas flow rates, and substrate temperature. (4) A new nano material platform technology for Li-ion battery anode. M4: (1) Evaluate performance of both lab- and large format cells, and provide feedback for re-design of anode materials; (2) Install production line for 18650-format cylindrical wound cells (capacity of 1000 cells/day).		
Phase III, Task 3: Commercialization of Next Generation of Li-ion Batteries • 100% completed • >50% completed	M5: (1) Prototype Li-ion battery for vehicle applications constructed and tested; (2) Progress reports (p) and final report (f)		

Accomplishments _ Developed the processes for producing electro-spun CNF-based conductive web

Electro-spun CNFs Vs. VG-CNFs:

Less expensive (can be mass-produced); no thermal overcoat .

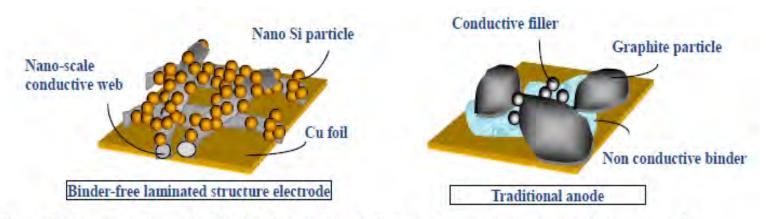


Figure 1. A comparison of a binder-free laminated structure anode and a traditional anode.

- A conductive web of nano-fibers was directly electro-spun onto the copper foil current collector without any binder.
- The electrical conductivity of this laminated electrode is about 7 times higher than that of the electrode made by traditional coating processes.

Accomplishments _ Prepared the large-size NGP/CNF web

Figure 2. Optical images of a laminated structure anode electrode during different stages of the heat treatment process: (a) as-made, (b) pre-oxidized, (c) after carbonization.

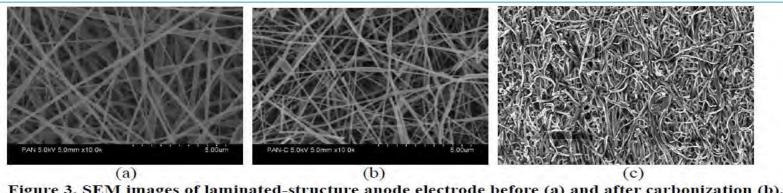
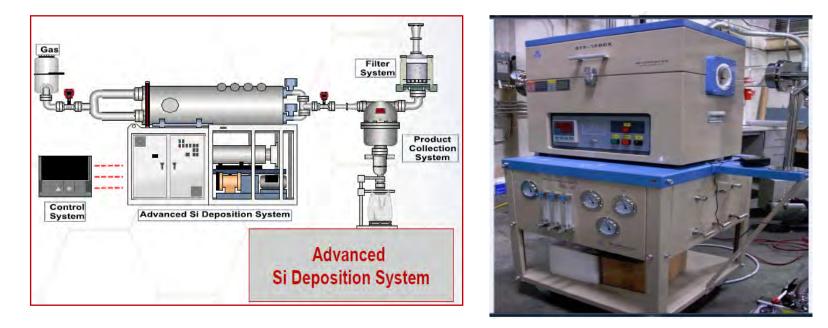
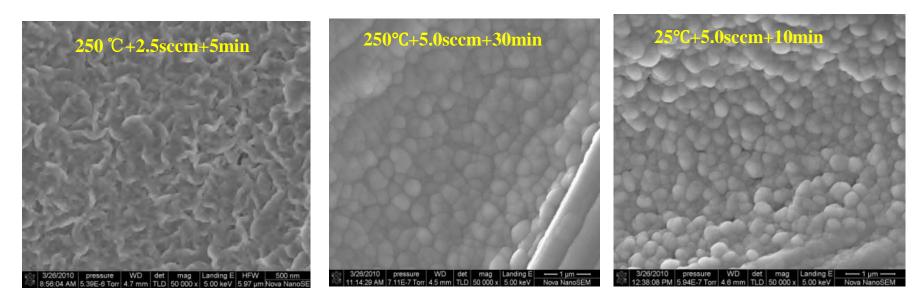



Figure 3. SEM images of laminated-structure anode electrode before (a) and after carbonization (b). An image of previously prepared structure (c) is also shown for comparison.

This large-size conductive web can be used in a roll-to-roll process to make the anode electrode in a cost-effective manner, further reducing the total cost of a battery.

Accomplishments ____ Si coated conductive CNF web

Designed a CVD system for mass-producing Si-coated conductive web

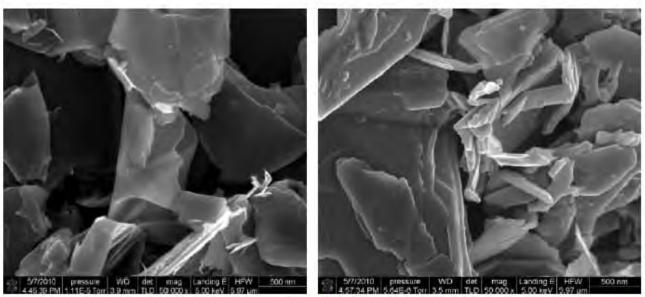

- Significantly higher deposition rate.
- Allows for more flexible chamber design.
- More conducive to roll-to-roll manufacturing.

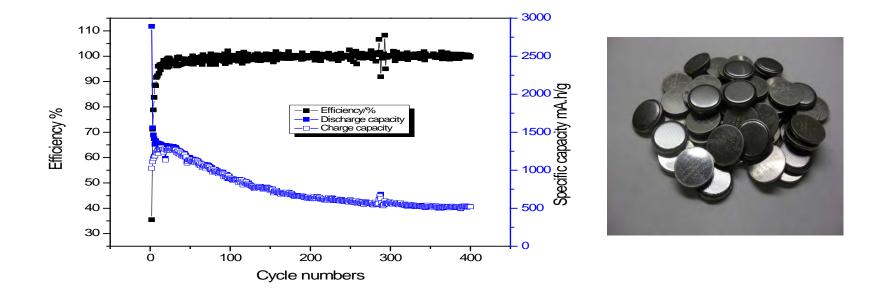
Microstructural analysis of Si films

- Effects of deposition time on the Si morphology
- Effects of SiH₄ flow rate on the Si morphology
- Effects of deposition temperature on the Si morphology

Accomplishments Characterization of Si coating

Microstructure of Si film on NGPs




Figure 5. SEM images of uncoated graphene platelets (left) and Si coated graphene platelets (right).

Accomplishments

---- Small lab-scale cell performance

It can be seen that the discharge capacity is still higher than 500 mAh/g after 400 cycles. Similar finding (fast capacity fading after initial 20-30 cycles) has also been reported in some recent literature.

> The proposing team includes companies leading in their respective markets along the entire supply chain

The suppliers

Angstron – a leading supplier of NGPs and NGP-based anode technology

Nanotek - a supplier of electro-spun CNFs.

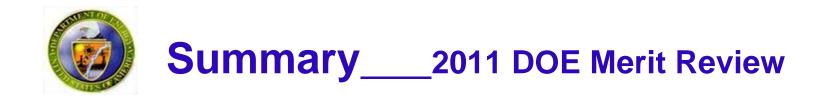
The technology integrator and battery producer

K2 - a leading manufacturer of the safer lithium iron phosphate batteries

E-One Moli – A leading manufacturer of EV cells

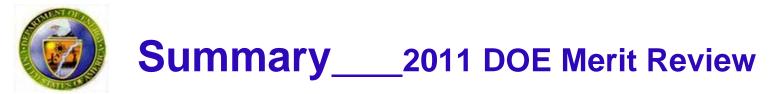
The OEM

Honda America – world's leading producer of automobiles, Nissan Motor – a leading producer of EVs.



• Large size (12" x 12") conductive webs with laminated structures of NGP/CNF and the anode electrodes using Si-coated conductive webs will be prepared at Angstron.

• Further evaluation of Si/conductive web anode materials, Si/graphene powder anode materials, and Si/laminated anode electrode by using button cells will be continued both at Angstron and K2, and pouch cells for full cell performance evaluation will be made and tested.


• Commercialization activities: (1) We will have additional conference meetings and site visits with potential investors and partners. (2) A pilot-scale production line to manufacture alloy anode materials will be set up during the next two quarters.

- A large-size (12" x 12") NGP/CNF conductive web has been prepared by using Angstron's nano-fiber electro-spinning system.
- This large-size conductive web can be directly deposited onto a copper foil current collector in a continuous manner. This technology could enable a roll-to-roll process for making high-performance, low-cost anode electrodes, further reducing the total cost of a battery.

- Great progress has been made in developing superior lithium ion battery anode technologies:
 - High-capacity (depending upon the Si proportion, an electrode capacity of about 500-2,000 mAh/g is routinely achieved at 0.35C-10C)
 - High-rate capable.
- Actively seeking strategic partners for accelerated commercialization of our anode technologies.

Summary: Advantages of Si-CNF/NGP Technology

- Nano Si coating provides the highest specific capacity.
- NGP/CNT Web serves as a network of interconnected electron-conducting paths.
- NGPs assist in reducing electrical resistance and dissipating the heat generated during battery operations. No additional conductive additives are needed.
- CNFs impart structural integrity to a NGP web and, hence, improve ease of web handling.
- NGPs and electro-spun CNFs are low-cost nano materials.
- The CNF or NGP geometry enables the supported coating to freely undergo strain relaxation in transverse directions.
- NGPs provide geometric confinement effect and 2-D envelop maintains good contact with Si particles.
- A coating thickness less than 100 nm means an ultra-short lithium ion diffusion distance. → High rate capable !

Summary: Value Proposition

- At a price of \$30-50/Kg, Angstron's high-capacity anode materials will enable an HEV producer to spend an additional \$120-\$150 (including anode price difference and costs for additional cathode and electrolyte amounts, corresponding 4%-5% of the total cost of a \$3000 battery) to double the battery-only operating range of a \$30,000 HEV.
 - Doubling this range would dramatically improve the market potential for HEVs.
 - The Chevy Volt (as an example) has a targeted range of 40 miles on its battery pack. Our technology could provide GM Volt with a commanding 80 mile range.

