Hybrid Nano Carbon Fiber/Graphene Platelet-Based High-Capacity Anodes for Lithium Ion Batteries

PI: Aruna Zhamu, Ph.D. Presenter: Bor Z Jang, Ph.D.

Organization: Angstron Materials, Inc Date: June 8, 2010

Project ID: ES009

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Award Number: **DE-EE0001219** DE-PS26-08NT01045-02, Subtopic 1

Overview

Timeline

- Project start: Sept. 15, 2009
- Project end: Sept. 14, 2012
- Percent complete: 30%

Budget

- Total project funding DOE share: \$1,594,303 Contractor share: \$1,603,937
- Funding received in FY09: \$130,000
- Funding for FY10: \$633,871

Barriers

- Barriers addressed (Current Li-ion cells)
 - > A: High production cost;
 - B: Low capacity and short cycle life;
 - **C:** Si pulverization.
- Targets

	2010	2011	2012	
Anode Specific capacity	650 (mAh/g)	1000 (mAh/g)	1000 (mAh/g)	
Others	50 cycles (1C), < 20% capacity fade	750 cycles, ~70% SOC swing, < 20% of capacity fade		
Cell status	Button cell	n cell 18650 cell 18650 cell		

Partners

- K2 Energy Solutions, Inc.,-- Cell evaluation
- Applied Sciences, Inc.,-- VG-CNFs

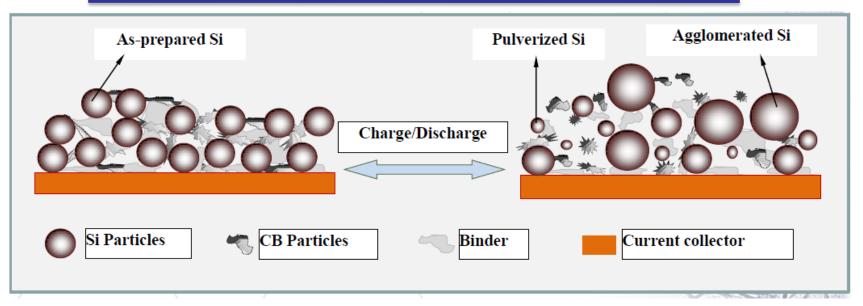
To develop and commercialize next generation of high-energy density anode materials for Li-ion batteries (Si-NGP/CNF hybrid materials)

<u>Phase 1: Applied Research (Prior to Proposal Submission):</u> Demonstrated the technical feasibility of new high-energy anode materials– **Si nano coating/particles supported by a 3-D network** (mat) of nano graphene platelets (NGP)/carbon nano-fibers (CNF).

Phase 2: Technology Development (This project)

- Determine the optimized Si-NGP/CNF blends (hybrids) that exhibit the best performance/cost ratios.
- Develop the process technology for cost-effective production of Si-NGP/CNF blends

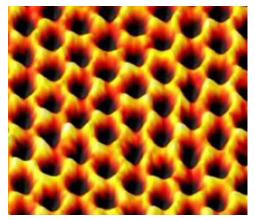
Phase 3: Technology Validation


Produce high-energy anode materials and initiate a marketing program for their distribution.

Approach

Prevent Si pulverization ?

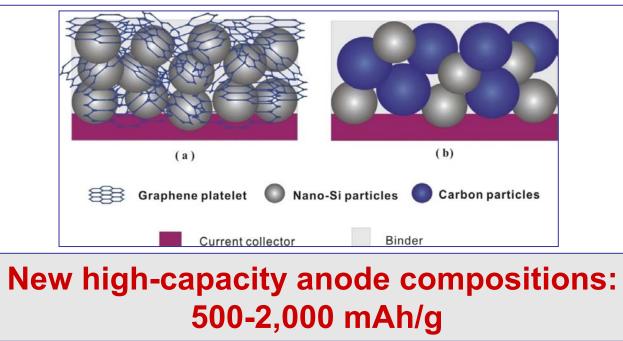
Conventional Approaches:


- Reducing the size of active materials:
 - Ultra-thin film;
 - Using nano particles to reduce the volume change-induced strain energy during cycling;
- Adding a cushioning material to offset the volume change of the active material.

Approach: Using NGP as a supportive/protective substrate Nano graphene platelets (NGPs)

A 2-D honeycomb structure of carbon atoms as thin as one carbon atom (< 0.34 nm)

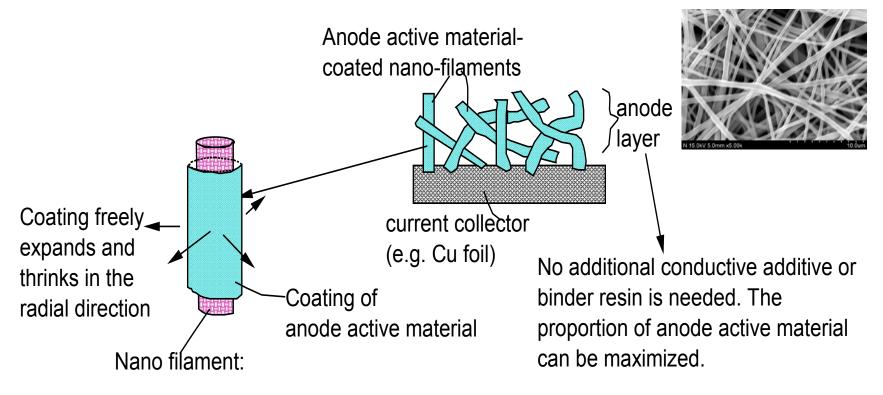
(Image courtesy of DOE/Lawrence Berkeley National Laboratory)


- Ultra-high Young's modulus (1,000 GPa)
- Highest intrinsic strength (up to ~ 130 GPa).
- Exceptional in-plane electrical conductivity (up to ~ 20,000 S/cm).
- Highest thermal conductivity (up to ~ 5,300 W/(mK)).
- High specific surface area (up to $\sim 2,675 \text{ m}^2/\text{g}$).

Approach

Functions of NGPs?

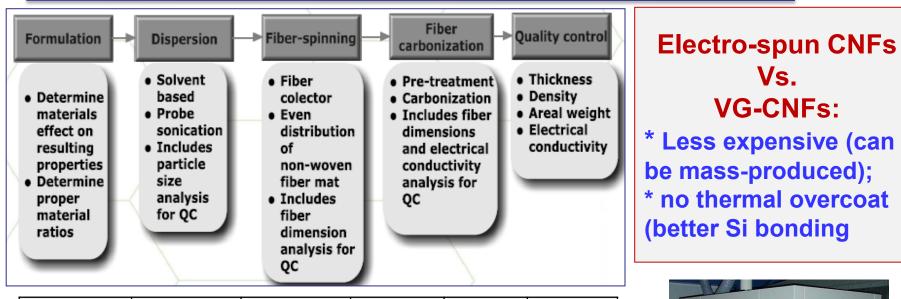
- Increased electrode conductivity due to a percolated graphene network;
- Dimensional confinement of Si by the surrounding graphene sheets limits the volume expansion upon lithium insertion;
- Si/graphene or SnO_2 /graphene form a stable 3D architecture.
- Graphene sheets prevent aggregation of nanoparticles during the charge/discharge process.



Approach

Functions of CNFs?

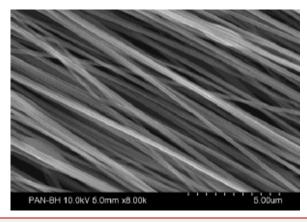
- Impart structural integrity to the 3-D net (mat or paper)
- Provide a geometry that enables Si to freely expand and shrink in the radial direction

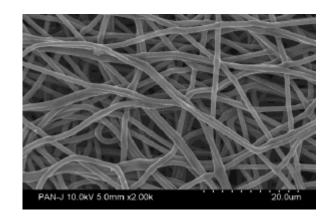


Phase I	Task 1: Project Management & Planning	M1: (10/28/2009) Project plan					
	Task 2: Development and Optimization of Anode Materials						
Phase II	2.1 Development & optimization of Si-supporting CNF-NGP blend compositions	M2: (1) (02/28/2010) Provide a window of desired anode material properties: porosity or density of CNF/NGP preforms, electrical conductivity, mechanical strength, surface area, affinity to silicon deposition, and cost; M2: (2) (02/28/2010) Small laboratory scale cells with an anode specific capacity of 650 mAh/g, Charge/discharge cycles 50;					

Accomplishments _ Developed the processes for producing electro-spun CNF-based conductive web

Conductive mat	Desired Conductivit y (S/cm)	Conductivit y achieved (S/cm)	Density (g/cm ³)	Surface Area (m ² /g)	Modulus (MPa)
Aligned CNF mat	>1	~ 9.15	0.4 ~ 0.8	3~10	80~180
Random CNF mat	>1	~ 11.7	0.4 ~ 0.8	3~10	80~180
CNFs/CNT mat	>1	~ 1.8	0.15~0.3	10~20	60~150

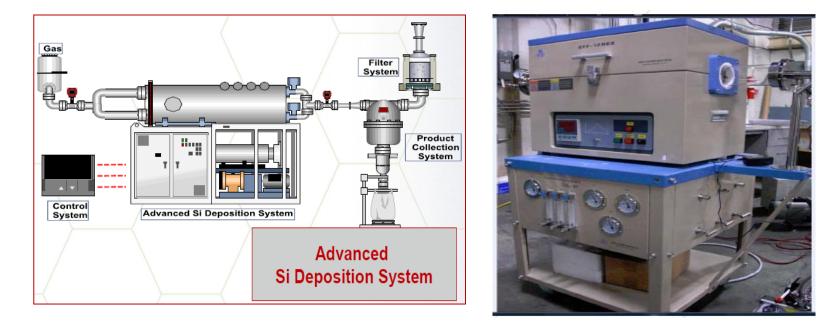

Process window for making conductive CNF web


Accomplishments Electrically conductive CNF web

Conductive web	Conductivity (S/cm)	
Highly aligned carbon nanofiber web	9.15	
Randomly arranged carbon nanofiber web	11.7	
CNFs/CNTs web	1.8	

Compared to the VG-CNFs/CNTs mat prepared by a conventional paper-making process, the electrical conductivity of this new conductive mat is 6.5 times higher, and the density is also higher (0.40g/cm³, as opposed to 0.25g/cm³ for VG-CNF/CNT mats).

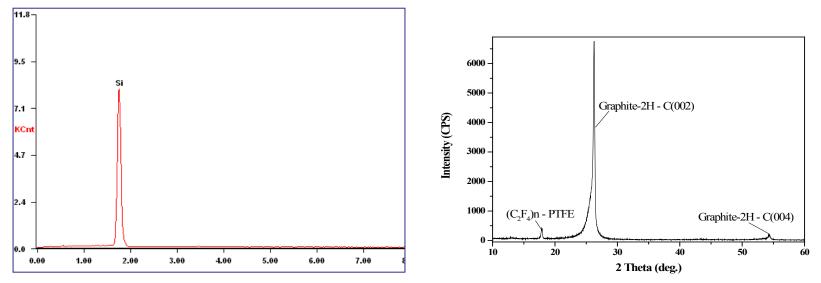
Highly aligned carbon nanofibers



Randomly oriented carbon nanofibers

Accomplishments ____ Si coated conductive CNF web

Designed a CVD system for mass-producing Si-coated conductive web


- Significantly higher deposition rate.
- Allows for more flexible chamber design.
- More conducive to roll-to-roll manufacturing.

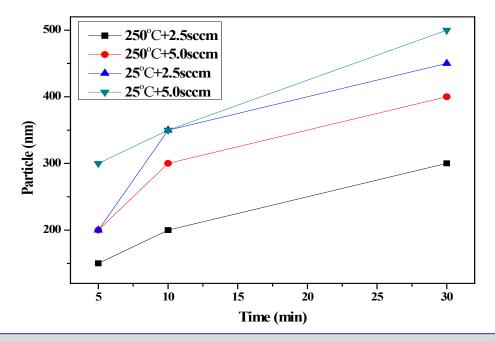
Composition analysis of Si coatings

- Chemical composition of Si coated CNF web analyzed by EDS & XRD
- The XRD spectra of Si coated carbon fiber

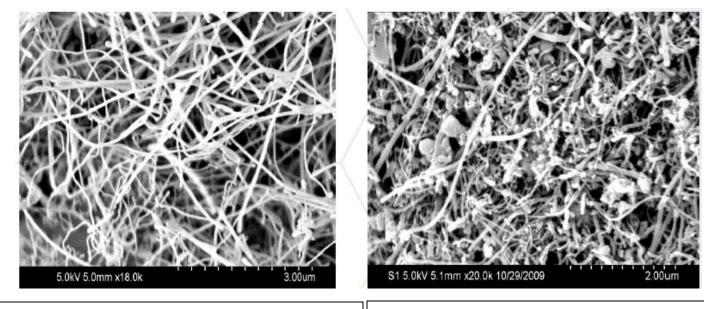
- EDS results: coating prepared is pure silicon
- XRD results: deposited silicon coating is amorphous

Accomplishments

Microstructural analysis of Si films


- Effects of deposition time on the Si morphology
- Effects of SiH₄ flow rate on the Si morphology
- Effects of deposition temperature on the Si morphology

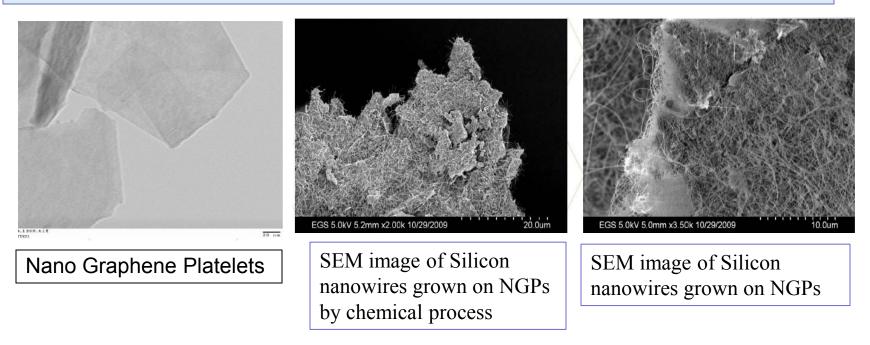
Effects of process parameters on the Si grain size



- Silicon film has been successfully fabricated by CVD; grain size from 100 nm to 500 nm.
- The Si coated conductive web is comprised of about 60.76 wt% Si element.
- Silicon film is amorphous

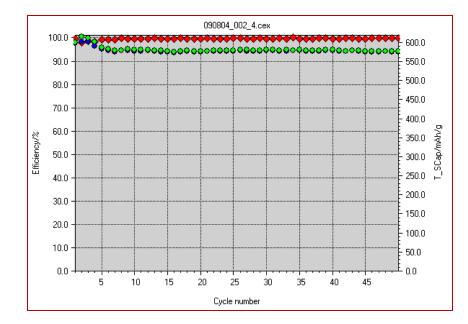
Accomplishments (Si nanowire/conductive web)

SEM image of Silicon nanowires grown by a chemical process


SEM image of Silicon nanowires grown within CNTs

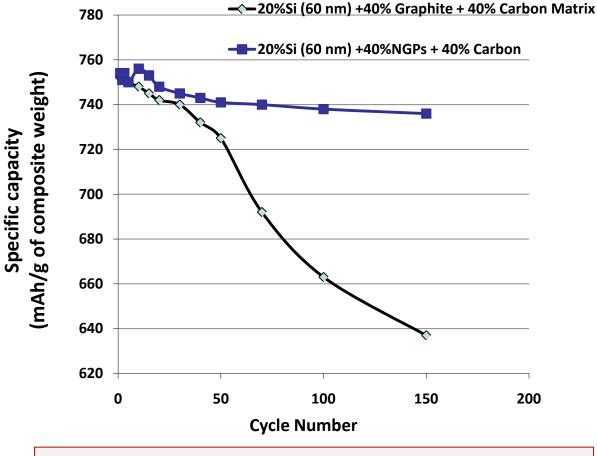
Low-cost process: Chemical solution process
Tailorable Si loading: 5 wt% ~ 50 wt%

Silane-less Deposition of Si on Nano Graphene Platelets (NGPs)


- Low-cost process: Chemical solution process
- Tailorable Si loading: 5wt% ~ 50wt%
- Highly conductive substrate: NGPs

Accomplishments

---- Small lab-scale cell performance



- Si Loading: < 15 wt%</p>
- Specific surface area (m²/g): < 2.0 m²/g
- First cycle efficiency: > 93%
- > Tap density: >1.2 g /cm³
- Charge / Discharge rate: 0.35C

Accomplishments - Half-cell performance

- Si Loading: < 21 wt%</p>
- First cycle efficiency: > 93%
- Charge / Discharge rate: 1C

Collaboration and Coordination

Partners:

K2 Energy Solutions, Inc.

K2 Energy will perform electrochemical testing and provide battery specifications for various market segments, including automotive and non-automotive, and will be one of the first adopters of the technology at the conclusion of the project. A lab scale battery evaluation line has been established at K2' USA facility.

Applied Sciences, Inc.

ASI will provide the VG-CNFs, Angstron will provide NGPs, Angstron will mix NGPs and VG-CNFs to form a porous web of nano filaments that will compare with Angstron's conductive web.

> The proposing team includes companies leading in their respective markets along the entire supply chain

The suppliers

- Angstron a leading supplier of NGPs and NGP-based anode technology
- ASI a world leading supplier of CNFs and developer of a breakthrough VG-CNF-based anode technology

The technology integrator and battery producer

K2 - a leading manufacturer of the safer lithium iron phosphate batteries

The OEM

GM – world's leading producer of automobiles, HST Auto – a leading producer of high-performance cars).

- A larger lab-scale CVD system will be installed and operated at Angstron Materials. The Si coating processes will be optimized by varying the time, pressure, and silane concentration to achieve desired properties.
- A safe operating procedure for the coating process will be established, including MSDS of Silane, and the detailed personnel protection requirements.
- The morphology, thickness, crystal structure (crystalline or amorphous structure), and the weight percentage of Si coating will be characterized during FY 2010.
- The evaluation of Si-coated anode materials by the half cell method will be conducted at Angstron and K2 during FY 2010

- Development and optimization of processes for mass-producing Sisupporting CNF-NGP blends
- Optimized manufacturing parameters of CVD, including temperature, total pressure, gas flow rates, and substrate temperature will be obtained.
- A new nano material platform technology for Li-ion battery anode will be developed and fully evaluated with both button cells and 18650 cells.

- Great progress has been made in developing superior lithium ion battery anode technologies:
 - High-capacity (depending upon the Si proportion, an electrode capacity of 500-2,000 mAh/g is routinely achieved at 0.35C-3C)
 - High-rate capable
- Actively seeking strategic partners for accelerated commercialization of our anode technologies.

Summary: Advantages of Si-CNF/NGP Technology

- Nano Si coating provides the highest specific capacity.
- NGP/CNT Web serves as a network of interconnected electron-conducting paths.
- NGPs assist in reducing electrical resistance and dissipating the heat generated during battery operations. No additional conductive additives are needed.
- CNFs impart structural integrity to a NGP web and, hence, improve ease of web handling.
- NGPs and electro-spun CNFs are low-cost nano materials.
- The CNF or NGP geometry enables the supported coating to freely undergo strain relaxation in transverse directions.
- NGPs provide geometric confinement effect and 2-D envelop maintains good contact with Si particles.
- A coating thickness less than 100 nm means an ultra-short lithium ion diffusion distance. → High rate capable !

Summary: Value Proposition

- At a price of \$30-50/Kg, Angstron's high-capacity anode materials will enable an HEV producer to spend an additional \$120-\$150 (including anode price difference and costs for additional cathode and electrolyte amounts, corresponding 4%-5% of the total cost of a \$3000 battery) to double the battery-only operating range of a \$30,000 HEV.
 - Doubling this range would dramatically improve the market potential for HEVs.
 - The Chevy Volt (as an example) has a targeted range of 40 miles on its battery pack. Our technology could provide GM Volt with a commanding 80 mile range.

