HIGH-VOLTAGE SPINEL AND POLYANION CATHODES

ARUMUGAM MANTHIRAM Electrochemical Energy Laboratory (ECEL) Materials Science and Engineering Program The University of Texas at Austin

May 14, 2012

Project ID #: ES051

This presentation does not contain any proprietary, confidential, or otherwise restricted information

OVERVIEW

Timeline

- Project start date: June 2010
- Project end date: December 2012
- 100 % complete

Budget

- Total project funding
 - DOE: \$672K
- Funding for FY10
 - \$260K
- Funding for FY11
 - \$260K
- Funding for FY12
 - \$152K

Barriers

- Barriers addressed
 - Cost
 - Cycle life
 - Energy and power densities
- Targets
 - Long cycle life high-voltage
 - (4.7 V) spinel cathodes
 - High capacity and high-voltage polyanion cathodes
 - Increased energy and power with spinel and polyanion cathodes

RELEVANCE

Objectives

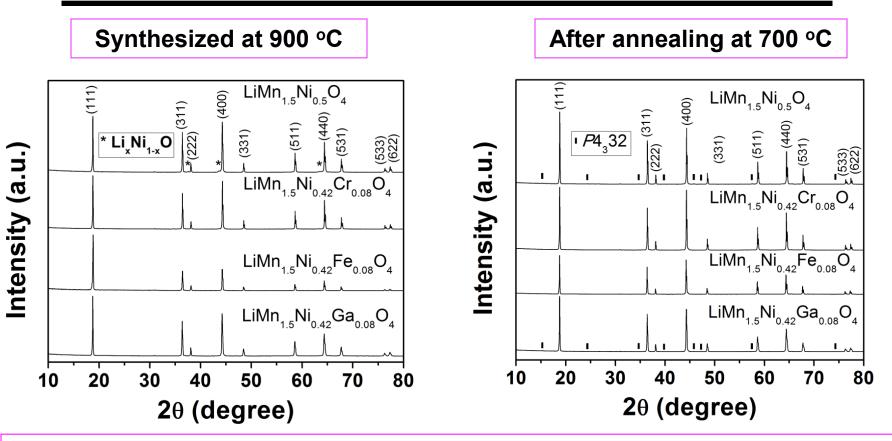
- To develop high-performance spinel and polyanion cathodes for lithium-ion batteries and a fundamental understanding of their structure-composition-performance relationships
 - To develop high-voltage (4.7 V) spinel oxide compositions with controlled morphology and optimum cationic substitutions that can maximize the tap density, cycle life, energy, and power, while keeping the cost low
 - To develop a fundamental understanding of the factors that control the electrochemical performances of high-voltage spinel manganese oxide cathodes
 - To develop novel low-cost synthesis processes for high-capacity, high energy phosphate and silicate cathodes

MILESTONES

Month/Year	Milestone
September 2011	Development of novel synthesis approaches for high-capacity nanostructured silicate and phosphate cathodes
December 2011	Understanding the role of cation doping, surface modification, and morphology on the electrochemical properties of 4.7 V spinel cathodes

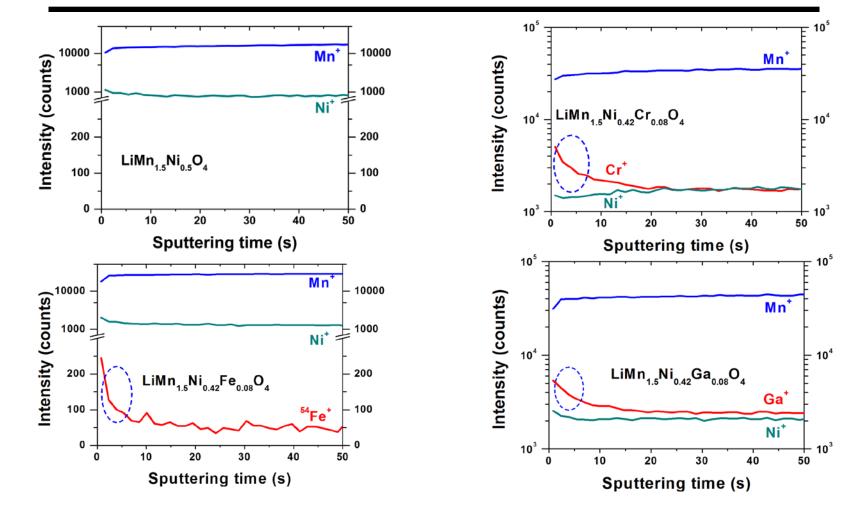
APPROACH / STRATEGY

- Develop a firm understanding of the factors controlling the electrochemical performances of cathode materials and utilize the understanding to develop high-performance cathodes for vehicle batteries
- Cationic substitutions in 4.7 V spinels to stabilize the disordered spinel structure
- Cationic substitutions to realize robust cathode-electrolyte interface in 4.7 V spinel
- Morphological control to increase the tap density of 4.7 V spinel cathodes
- Magnetic measurements to quantify Mn³⁺ content in 4.7 V spinel cathodes
- Novel synthesis approaches for nanostructured polyanion (phosphate and silicate) cathodes that can increase the energy and lower the manufacturing cost
- Solid-state, high-energy ball milling, and solution-based synthesis approaches
- Advanced chemical, structural, and surface characterizations
- In-depth electrochemical evaluation including impedance analysis
- Understanding the structure-property-performance relationships



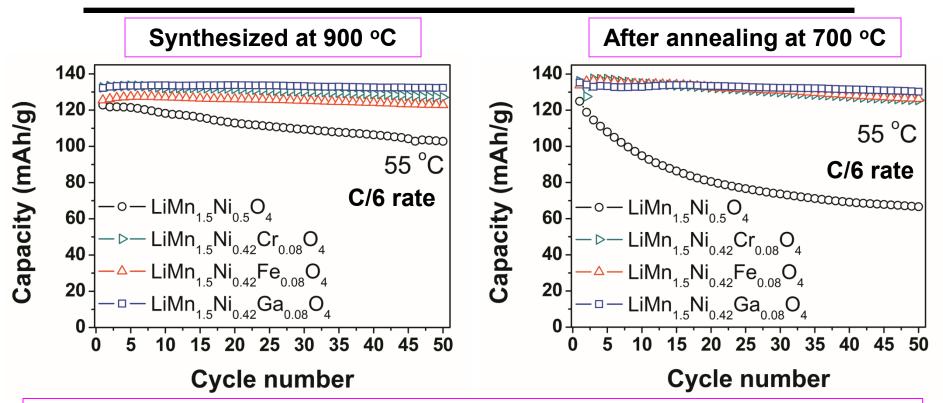
TECHNICAL ACCOMPLISHMENTS AND PROGRESS

- The solubility of Ni in the high-voltage (4.7 V) spinel LiMn_{1.5}Ni_{0.5}O₄ increases with decreasing temperature, eliminating the $Li_xNi_{1-x}O$ impurity on annealing at 700 °C
- Cationic substitutions in the 4.7 V spinel $\text{LiMn}_{1.5}\text{Ni}_{0.08}\text{O}_4$ (M = Cr, Fe, and Ga) eliminate Li_xNi_{1-x}O impurity, stabilize the disordered phase, and offer a stable cathode-electrolyte interface due to the segregation of the Mⁿ⁺ ions to the surface
- Cation-substituted LiMn_{1.5}Ni_{0.42} $M_{0.08}O_4$ (M = Cr, Fe, and Ga) spinels exhibit superior cycle life at 55 °C with high rate capability compared to $LiMn_{15}Ni_{05}O_4$
- LiMn_{1.5}Ni_{0.5}O₄ synthesized in different morphologies reveals that the electrochemical performance increases with increasing Mn³⁺ content
- A magnetic measurement method has been developed to determine quantitatively the Mn^{3+} content in the Li $Mn_{1,5}Ni_{0,5}O_{4}$ spinel
- Three different polymorphs of LiVOPO₄ have been synthesized and characterized by a novel microwave-assisted synthesis approach
- Similar novel approaches are developed to stabilize the Li₂MSiO₄ cathodes



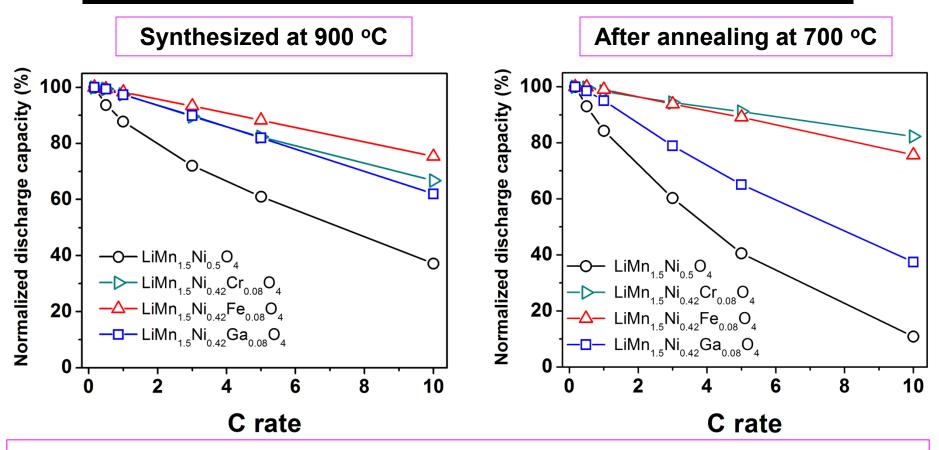
INFLUENCE OF SYNTHESIS CONDITIONS: XRD

- Substitution of Cr, Fe, and Ga eliminates the Li_xNi_{1-x}O impurity phase and stabilizes the disordered spinel phase
- Annealing at 700 °C eliminates Li_xNi_{1-x}O impurity (Ni solubility increases at low T) and increases the cation ordering in undoped and Ga-doped samples
- Similar conclusions were obtained with FTIR data as well


TOF-SIMS DEPTH PROFILES OF 5 V SPINELS

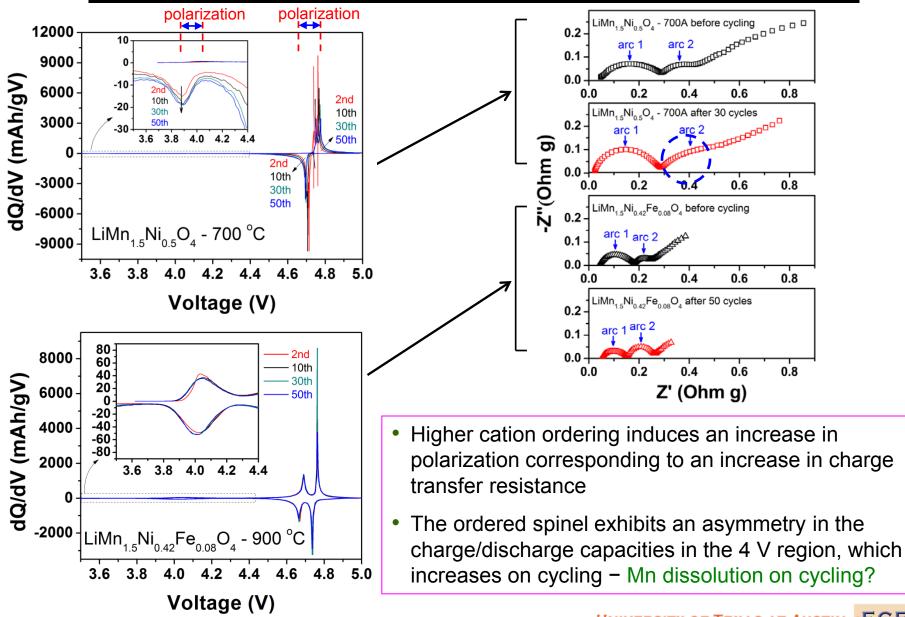
• The depth profiles show higher concentration of Cr, Fe, and Ga on the surface

• The surface segregation does not change after annealing at 700 °C

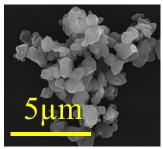

CYCLABILITY OF 5 V SPINELS AT 55 °C

- Cr, Fe, and Ga doped samples offer improved cyclability at 55 °C as the surface segregated ions provide stable cathode-electrolyte interface
- Doped samples maintain good cyclability even after annealing at 700 °C irrespective of degree of cation ordering due to surface segregation
- Difference in cyclability between the doped and undoped samples is larger after annealing at 700 °C due to an increase in cation ordering

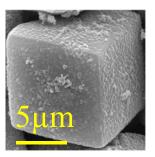
ECEL

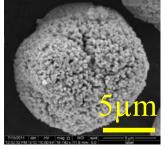

RATE CAPABILITY OF 5 V SPINELS

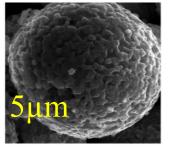
- Doped samples have higher rate capability due to lower cation ordering and suppressed SEI layer formation by surface segregation
- Rate capabilities of the undoped and Ga-substituted samples decrease after annealing at 700 °C due to an increase in cation ordering


ECEL

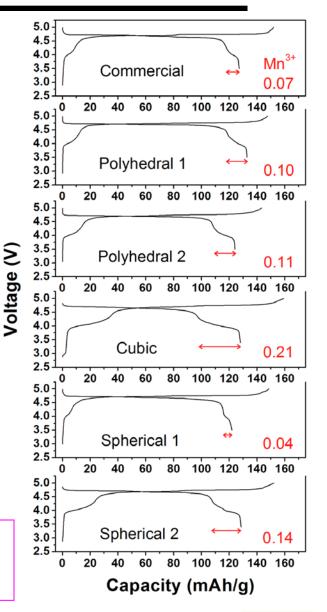
ORDRED VS. DISORDERED 5 V SPINELS


UNDOPED LiMn_{1.5}Ni_{0.5}O₄ WITH DIFFERENT MORPHOLOGIES

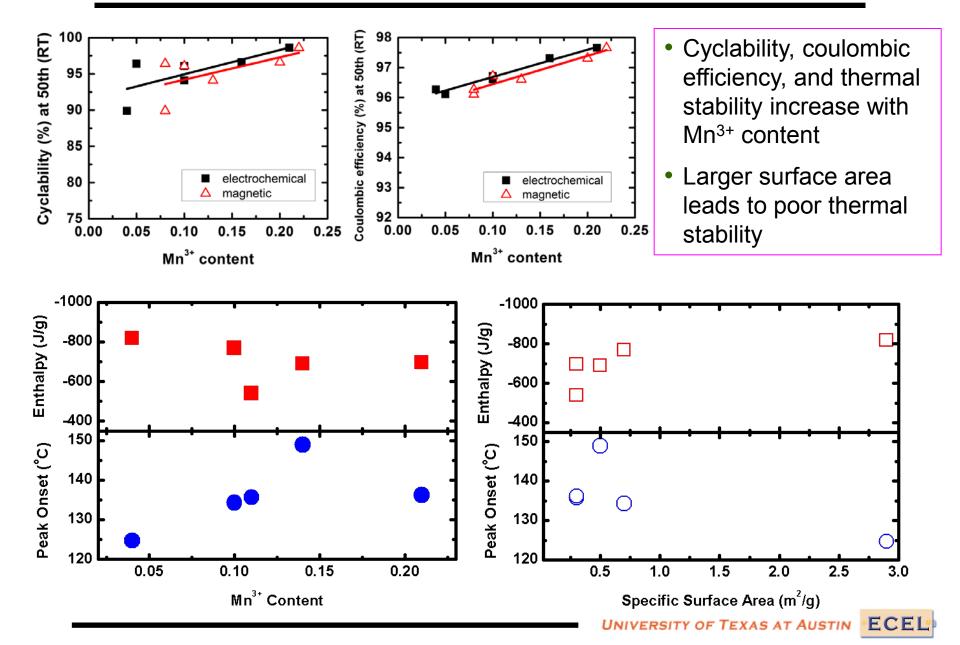

Commercial NEI Corp.



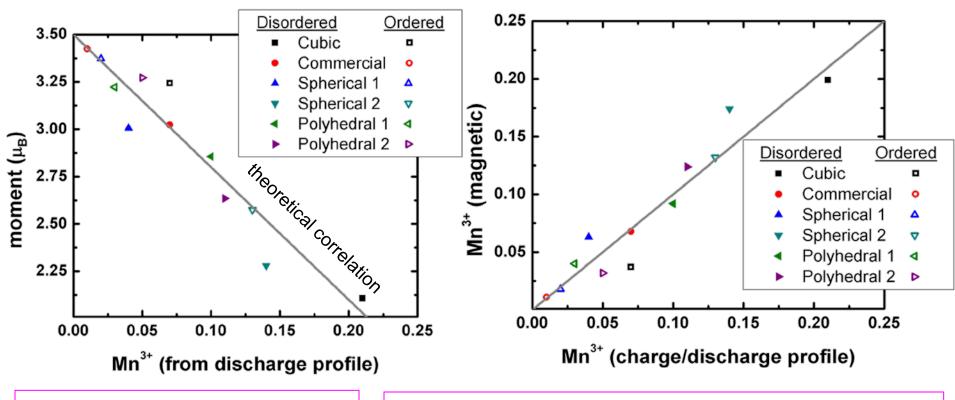
Cubic Hydrothermal (chloride)



Spherical 1 Tank reactor (carbonate)

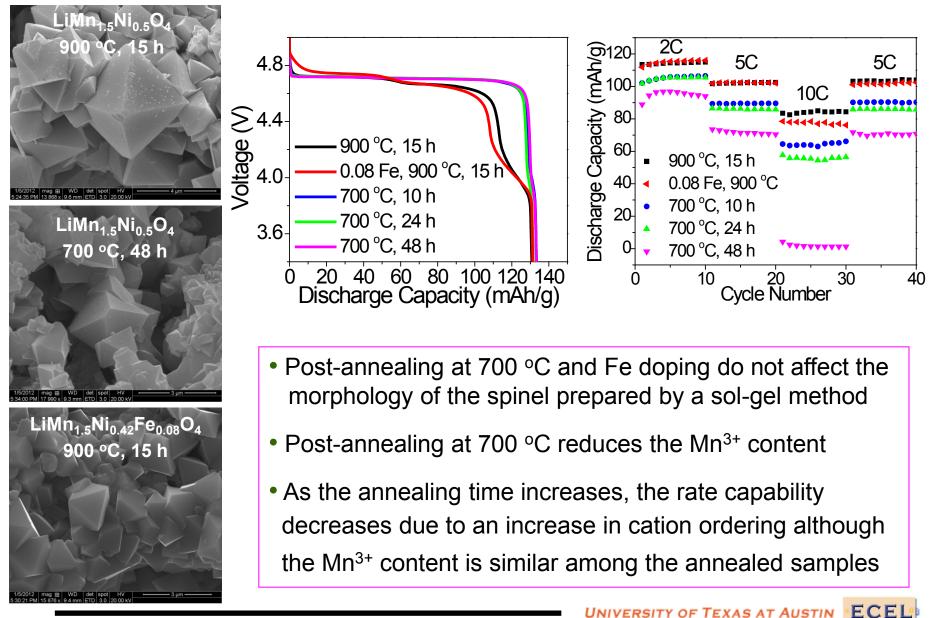

Spherical 2 Hydrothermal (sulfate)

 Morphological control to obtain samples with tap density up to 2.0 g/cm³

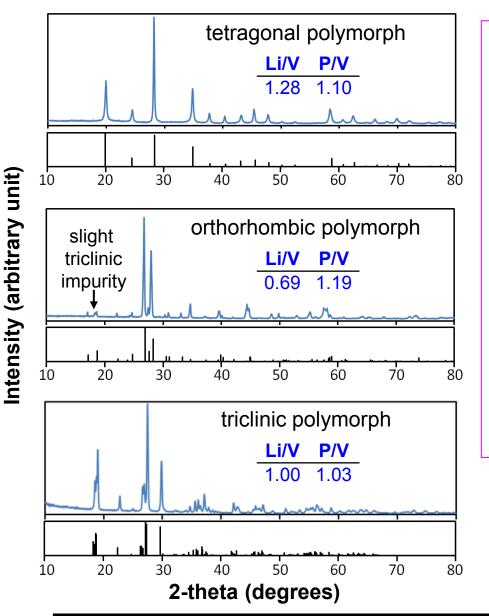


Mn³⁺ CONTENT vs. CYCLABILITY & THERMAL STABILITY

QUANTIFICATION OF Mn³⁺ CONTENT BY MAGNETIC DATA

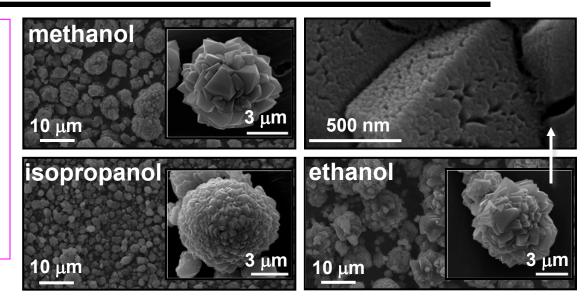

- Ferrimagnetic ordering below Curie temperature
- Mn³⁺ and Ni²⁺ spin moments are parallel to each other and antiparallel to Mn⁴⁺
- Saturated moment at 0 K gives Mn³⁺

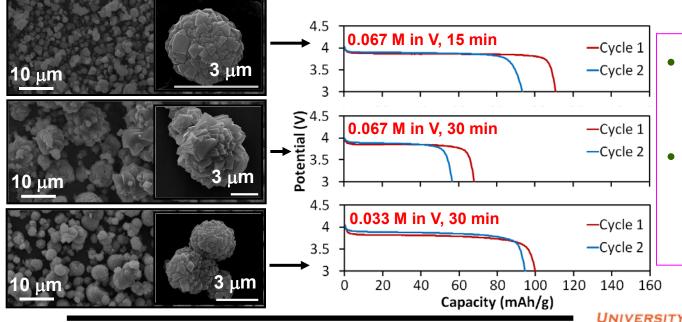
$$\frac{\mu_{B}}{FW} = g_{e}S_{Mn^{4+}}N_{Mn^{4+}} - g_{e}S_{Ni^{2+}}N_{Ni^{2+}} - g_{e}S_{Mn^{3+}}N_{Mn^{3+}}$$


$$\mu_{B}: \text{ measured moment/formula}$$
FW: formula weight
$$g_{e}: \text{ gyromagnetic factor for an electron = 2}$$
S: the total net spin of the electron in each ion
N: the number of ions per formula unit

ROLE OF CATION ORDERING ON RATE CAPABILITY

MICROWAVE-SOLVOTHERMAL (MW-ST) SYNTHESIS OF LiVOPO₄




- LiVOPO₄ exists in orthorhombic, tetragonal, and triclinic polymorphs
- All three polymorphs have been synthesized by the MW-ST method by varying solvent and precursor ratios
- The triclinic polymorph shows stoichiometric elemental ratios while the tetragonal and orthorhombic polymorphs show nonstoichiometric elemental ratios, which could be related to defects or an amorphous impurity

polymorph	water: ethanol	Li:V:P
tetragonal	1:1	1.8:1:1
orthorhombic	1:3	1:1:4
triclinic	3:1	5:1:5

MORPHOLOGY AND PERFORMANCE OF TRICLINIC LIVOPO₄

- Triclinic LiVOPO₄ can be made in water mixed with a variety of alcohols (water : alcohol = 3:1)
- A microflower-like morphology forms for all alcohols
- Each microflower is composed of nanoparticle agglomerates

- Smaller particles yield better electrochemical performance
- Size is controlled by decreasing reaction time or precursor concentration

UNIVERSITY OF TEXAS AT AUSTIN

COLLABORATION AND COORDINATION WITH OTHER INSTITUTIONS

- University of Rhode Island Professor Brett Lucht
 - Investigation of SEI layer formation with stabilized 4.7 V spinel cathodes
- Pacific Northwest National Laboratory Dr. Jiguang (Jason) Zhang
 - Discussion and coordination of results on 4.7 V spinel cathodes
 - Investigation of the 4.7 V spinel cathodes by solid state NMR
- Lawrence Berkeley National Laboratory Dr. Jordi Cabana Jiménez
 - Discussion and coordination of results on 4.7 V spinel cathodes
 - Investigation of the 4.7 V spinel cathodes by X-ray absorption spectroscopy
- Oak Ridge National Laboratory Dr. Craig Bridges
 - Investigation of the phosphate and 4.7 V spinel cathodes by spallation neutron source and high resolution transmission electron microscopy
- DuPont Dr. George Kodokian
 - Evaluation of the 4.7 V spinel cathodes with DuPont's new electrolytes

PROPOSED FUTURE WORK

- Continue to develop a firm understanding of the various factors that influence the electrochemical performances of the 4.7 V spinel cathodes (*e.g.*, role of degree of cation ordering, segregation of cations to the surface, Mn³⁺ content, morphology, and synthesis/processing methods/conditions), and use the understanding to develop high-performance, high-power spinel cathodes for vehicle applications
- Recognizing that segregation of certain cations to the surface provides a unique advantage to enhance the electrochemical properties of high-voltage spinels, investigate by surface characterization techniques such as XPS and TOF-SIMS whether such surface segregations also play a role in enhancing the electrochemical properties of LiMn_{1-x}Fe_xPO₄ and LiCo_{1-x}Fe_xPO₄
- Pursue novel solution-based synthesis approaches such as microwave-assisted solvothermal and hydrothermal methods to access the high-capacity nanostructured Li_2MSiO_4 (M = Mn, Fe, Co, and Ni) and thereby improve their capacity

SUMMARY

5 V Spinel LiMn_{1.5}Ni_{0.5}O₄

- The solubility of Ni in LiMn_{1.5}Ni_{0.5}O₄ is dependent on temperature and it increases on annealing at 700 °C, eliminating the Li_xNi_{1-x}O impurity
- Cationic substitutions in $LiMn_{15}Ni_{0.42}M_{0.08}O_4$ (M = Cr, Fe, and Ga) eliminate the Li_xNi_{1-x}O impurity even at the high synthesis temperature of 900 °C, increase the degree of cation disorder between Mn⁴⁺ and Ni²⁺, and offer a more stable cathodeelectrolyte interface due to the decoration of the surface by the dopant ions, resulting in superior cyclability at 55 °C and high rate capability
- Doping with small amounts of cations is the way to employ them in practical cells
- The performance of the undoped LiMn_{1.5}Ni_{0.5}O₄ spinel is influenced by the Mn³⁺ content; a magnetic method has been developed, for the first time, to determine quantitatively the Mn³⁺ content that agrees closely with the electrochemical data

Polyanion cathodes

- A microwave-assisted solvothermal method has been developed to access the three polymorphs (tetragonal, orthorhombic, and triclinic) of LiVOPO₄
- Similar approaches are being developed for the high capacity Li₂MSiO₄ cathodes

