High-Voltage Solid Polymer Batteries for Electric Drive Vehicles

Hany Eitouni, PhD Seeo, Inc. May 2013

SEEO

Project #: ES129

This presentation does not contain any proprietary, confidential, or otherwise restricted information

•

Timeline Over	VIEW Barriers
Start October 2011 End September 2014 30% complete	 Barriers addressed: A. Battery cost C. Performance: Energy Density E. Lifetime Targets – prototype cells exhibiting: >515 Wh/l, >325 Wh/kg >1000 dd cycles,15 yr calendar life
Budget	Partners
Total funding DOE share: \$4.9M Contractor share: \$2.1M Funding received in FY12: \$1.2M Funding for FY13: \$2.0M	 Hydro-Québec (IREQ): Li anode development For baseline, interim & final deliverable cells Supports commercialization plan

- Safety & Abuse Testing

- Delivery of baseline low-voltage cells to demonstrate the safety, stability and performance of Seeo's nanostructured polymer electrolyte (NPE) using high capacity Li anodes
- Delivery of advanced high energy cells utilizing a layered solid electrolyte, Li anode and high-voltage cathode material
- Full performance evaluation and validation of specifications, with results from USABC safety and performance testing
- Analysis of the commercial and manufacturing potential and impact of advanced high energy cells

Milestone	Planned Completion Date	Actual Completion Date	Comments
Baseline Cells Delivered to DOE	6/30/2012	7/12/2012	Delay in receiving shipping clearance for cells Tested by Argonne National Labs (Ira Bloom)
Active Material Structure Specified	1/15/2013	1/15/2013	
Cathode Batches to Specification	6/30/2013		
Catholyte Polymer to Specification	12/31/2013		
Interim Cells Delivered to DOE	1/15/2014		
Final Cells Testing Completed	9/29/2014		
Final Cells Delivered to DOE	9/29/2014		
Commercialization Plan Completed	9/29/2014		

Element	Li-ion	Seeo
Electrolyte	Liquid	Solid
Anode	Porous	Solid
Cathode	Porous	Solid

DryLyte[™] Benefits

Safety: Non-flammable and non-volatile

Energy: Superior specific energy (Wh/kg)

Reliability: High temp stability, minimal fade

Conventional Li-ion Battery

Seeo DryLyte[™] Battery

Cu Current Collector		
Porous Graphite Anode Composite		Li Foil Anode
Porous Separator		Dry Solid Separator
	0000-0-0-00	
Porous Cathode Composite		Dry Polymer Cathode Composite
AI Current Collector		Al Current Collector

Project plan (high-level)

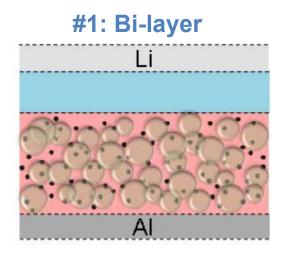
				20	12			20	13			2014	1
		Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
Phase I	Baseline Evaluation and Material Synthesis												
1	Baseline Cell Delivery												
2	Cathode Sourcing and Characterization												
3	Mechanical Stabilization of HV Catholyte												
4	Anolyte-Catholyte Interfacial Stability												
Phase II	Material Formulation and Scale-Up												
5	Small-Area Cell Validation												
6	Polymer Scale-Up												
Phase III	Cell Fabrication and Testing												
	Large-Area Cell Validation												
8	Stacked Cell Design Iterations												
9	Cell Fabrication & Manufacturability Assessment												
10	Safety and Performance Testing												

Phase I: Establish a baseline level for project evaluation and commence major research activities. Identify and develop high-voltage polymer and cathode materials.

Phase II: Optimize polymer and cathode mechanical and electrochemical properties. Develop volume synthetic techniques, comparing cost and performance.

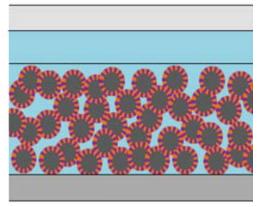
Phase III: Test and construct prototype cells, validate cell design, establish final specs, and deliver a commercialization plan

Seeo LFP cells: post-crush testing, no smoke or flames, avg. 20 C dT

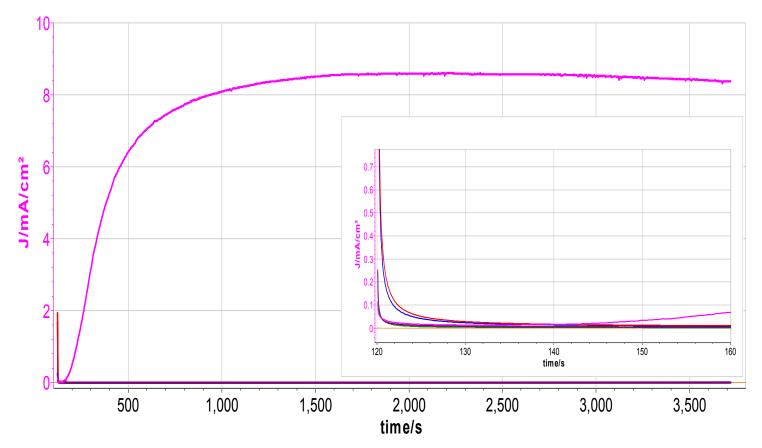

E	^x poner	ıť		Sec. 2	TT	No or the	4	
1205347.000 AGF0 0912 AA01 Test Summary All tests unless stated otherwise were performed at an ambient temperature of 80°C								
	Test Name	Sample #	USABC	Test Results	Cell Temperature Rise (°C)	UL1642 (Pass/Fail)		
		1	Apply a hard short (< 5 mΩ)	pplya hard short (< 5 mΩ)		Pass		
	Short- Circuit Test	2	for 10 minutes or until another condition prevents	No smoke or flames	21	Pass		
		3	completion of the test			Pass		
	Over- Discharge	1	Cell discharged to 150% of rated capacity	Nosmoke or flames	4	N/A		
		1			5	N/A		
	Over- Charge	2	Charge cell to 200% of rated capacity	No emoke or tamee		N/A		
	2	3			5	N/A		
RA	FT – Privileged	& Confider	ntial			1	$E^{\chi}(40)$	
Е	Example Test Report: Short Circuit, Overdischarge, Overcharge							

- Safety testing conducted on large-format Li-LFP cells •
- Safety tested by 3rd party labs (independent of DOE VT contract)

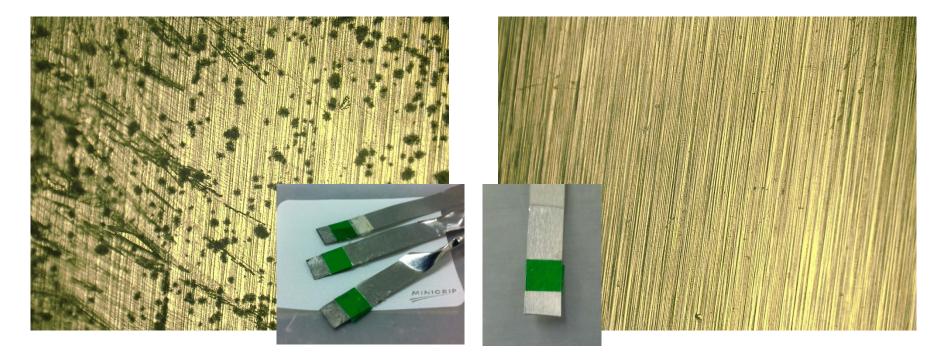
D


Safety testing for high-voltage cells scheduled for Phase 3 •

- High-voltage stable polymer used as a binder (catholyte)
- Baseline polymer used for Li anode stabilization
- Tuned copolymer structure to minimize interfacial resistance between electrolyte layers

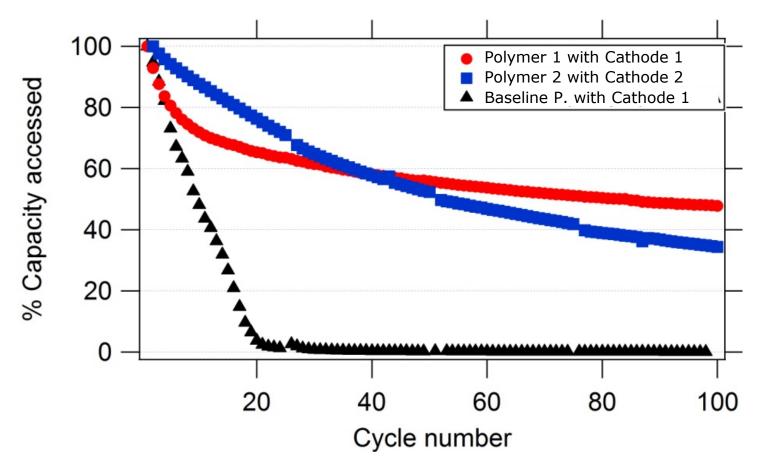

#2 Coated Particle

- Ceramic and organic coatings
 used on cathode particles
- Baseline polymer used as binder and for Li anode stabilization
- Thin coating layer enables good rate performance


Continuous Voltage testing of Li Salts at 4.3V

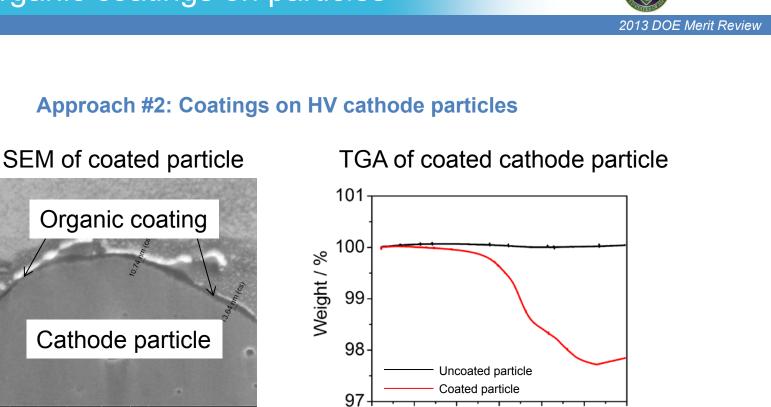
Salts with higher voltage stability than the salt used in baseline cells are being evaluated with candidate HV polymers

Salt solutions exposed to 4.3V (Li counter electrode, EC/DMC electrolyte)


Corroded AI electrode using Baseline salt

Pristine AI electrode using HV salt

Electrode corrosion demonstrates HV salt stability in cells



Approach #1: Bi-layer system with HV catholyte

HV polymers show stability over the baseline when paired with HV cathodes

Additional development to achieve stability targets is required

0

SEM of coated particles shows conformal polymer-coating

TGA of "coated and washed" particles shows weight loss, indicating adherent polymer coatings

100 200 300 400 500 600

T/°C

SEED

Organic coatings appear to adhere to the cathode particles' surface

- Institut de recherche d'Hydro-Québec (IREQ):
 - Develop Li foil for interim and final cell deliverables
 - Assess manufacturing costs for high capacity anodes
 - Lead safety, abuse and performance testing for final cells
- Cathode suppliers
 - Working with 2 commercial suppliers of high-voltage cathode materials for testing with candidate catholyte materials

Project plan (high-level)

					20	12			20	13		2	2014	1
			Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
Phase I	Baseline Evaluation and Material Synthesis	Lead												
1	Baseline Cell Delivery	Seeo												
2	Cathode Sourcing and Characterization	Seeo												
3	Mechanical Stabilization of HV Catholyte	Seeo												
4	Anolyte-Catholyte Interfacial Stability	Seeo												
Phase II	Material Formulation and Scale-Up													
5	Small-Area Cell Validation	Seeo												
6	Polymer Scale-Up	Seeo												
Phase III	Cell Fabrication and Testing													
7	Large-Area Cell Validation	Seeo/HQ												
8	Stacked Cell Design Iterations	Seeo												
9	Cell Fabrication & Manufacturability Assessment	Seeo												
10	Safety and Performance Testing	HQ												

Phase II Workstream Focus

5: Evaluate cathode, polymer and salt combinations in small-area full-cells. Investigate techniques for stabilization of cathode, salt and polymer composites

4: Develop block copolymers based on candidate materials and tune mechanical and electrochemical properties to minimize interfacial resistance with Seeo anolyte

6: Develop, test and evaluate scale-up methods for high-voltage catholyte block copolymers

Milestone	Planned Completion Date
Cathode Batches to Specification	6/30/2013
Catholyte Polymer to Specification	12/31/2013
Interim Cells Delivered to DOE	1/15/2014

- Seeo has developed a proprietary nanostructured polymer electrolyte (NPE) that is stable against high capacity anodes
 - Seeo has delivered baseline cells demonstrating this stability to Argonne National Labs with support from the Vehicle Technologies program
- In FY12, Seeo focused on evaluating two approaches for developing a NPE-based platform for high-voltage materials
 - First approach focused on developing high-voltage stable polymers that function as the binder in the cathode, and has shown promising results
 - Second approach uses polymer and ceramic coatings to provide voltage stability while minimizing the reduction in ionic conductivity
- Solid-state, high-energy cells represent a distinct opportunity for the United States to build a viable battery manufacturing industry
- With support from DOE, Seeo has commitment from our private investors for the full duration of this project

