

Annual Merit Review, DOE Vehicle Technologies Program, Washington, D.C.

Patricia Smith Thomas Jiang and Thanh Tran NAVSEA-Carderock Division

10 June 2010

Project ID: ES038

This presentation does not contain any proprietary or confidential information.

Overview

Timeline

- Project start date: 2008
- Project end date: 2012
- 35% Complete

Budget

- Funding received in FY09: \$250K
- Funding for FY10: \$250K
- Project cost shared by Navy

Barriers

- Energy Density
- Cycle Life
- Affordability
- Shelf Life
- Abuse Tolerance

Collaborators

Within DOE Program

- Deyang Qu
 - University of Massachusetts, Boston
 - Assessment of carbon materials

Outside of DOE Program

- Steven Dallek
 - G.J. Associates
 - Thermal stability of electrode materials
- Stephen Lipka
 - University of Kentucky
 - Inexpensive carbon materials
- Curtis Martin, Rebecca Smith
 - NSWC-CD
 - X-ray diffraction, Prototype safety tests
- Robert Waterhouse
 - ENTEK Membranes
 - Electrode Materials
- Linda Zhong
 - Maxwell Technologies
 - Prototype LIC cells

Why Ultracapacitors?

Strengths

- High specific power → Good for power assist
- Fast charge acceptance → Good for regenerative energy capture
- Excellent cycle life → Fewer replacements required
- Excellent low temperature performance
 → Good for engine start

Weaknesses

- Low specific energy → Limited operational time
- High self discharge → Requires frequent charge

Advantages of Hybridizing Battery and Ultracapacitor

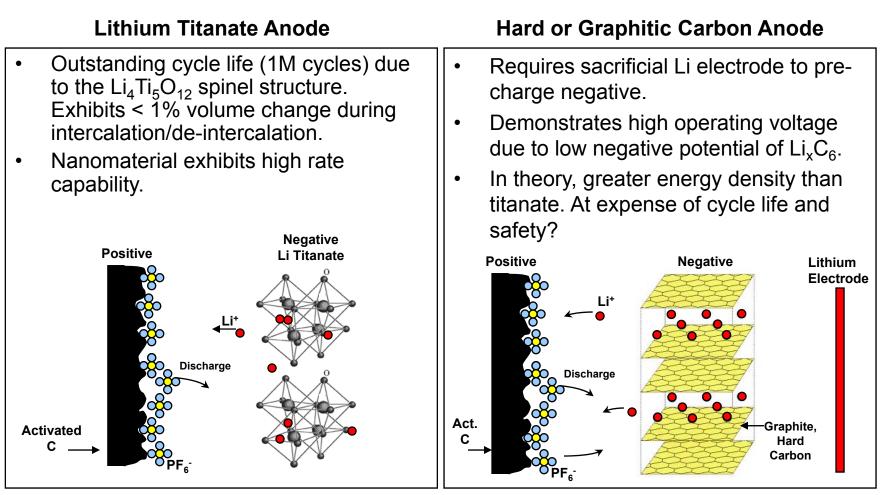
- Reduces battery operating current. Lower I²R heating.
- Reduces power pack weight.
- Extends battery life. Reduce replacement cost.
- Better low-temperature performance for cold engine starts.

Energy Density: 3 Wh/kg Power Density: 650 W/kg Operating Range: -30 to +52°C Survival Range: -46 to +66°C Cycle Life: 750,000 cycles

FreedomCar UC EOL Requirements							
System Attributes		12V Start-Stop (TSS) 42V Start-Stop (FSS)		42V Transient Power Assist (TPA)			
Discharge Pulse	4.2 KW	2s	6 KW	2s	13 kW	2s	
Regenerative Pulse	1	₩A	N/A		8 kW	2s	
Cold Cranking Pulse @ -30°C	4.2 KW	7 V Min.	8 KW	21 V Min.	8 kW	21 V Min.	
Available Energy (CP @1kW)	15	5Wh	30 Wh		60 Wh		
Recharge Rate (KW)	0.4	4 KW	2.4 KW		2.6 KW		
Cycle Life / Equiv. Road Miles	750k / 15	0,000 miles	750k / 150,000 miles		750k / 150, 000 miles		
Cycle Life and Efficiency Load Profile	U	C10	UC10		UC10		
Calendar Life (Yrs)		15	15		15		
Energy Efficiency on UC10 Load Profile (%)	95		95%		95%		
Self Discharge (72hr from Max. V)	~	<4%		<4%		<4%	
Maximum Operating Voltage (Vdc)		17		48		48	
Minimum Operating Voltage (Vdc)		9		27		27	
Operating Temperature Range (°C)	-30	-30 to +52		-30 to +52		-30 to +52	
Survival Temperature Range (°C)	-46	-46 to +66		-46 to +66		-46 to +66	
Maximum System Weight (kg)		5		10		20	
Maximum System Volume (Liters)		4		8		16	
Selling Price (\$/system @ 100k/yr)	40		80		130		

USABC Protected Battery Information DAIMLERCHRYSLER - Ford - General Motors

Objectives


- Develop electrode/electrolyte materials that will enable an ultracapacitor to meet power assist and regenerative braking goals.
 - 15-20 Wh/kg, 650 W/kg at cell level -30 to 50°C operational temp.
 - 750,000 1,000,000 cycles
 - -46 to 65°C survivability temp.

Approach

- Identify high capacity/capacitance electrode materials to increase the energy density of ultracapacitors. Understand the physico-chemical properties responsible for high capacity/capacitance.
- Develop electrolyte solvent systems that have a wide electrochemical voltage window and will allow the cell to meet cycle life and operating temperature goals.
- Evaluate reactivity of electrode materials with electrolyte.
- Fabricate and evaluate prototype capacitors in order to assess energy density, cycle life, self-discharge and safety.

Candidate Systems: Li Ion Capacitors

Combines Lithium Ion Battery-Type Anode (-) with Capacitor Carbon Cathode (+)

G. Amatucci, J. Electrochem. Soc., 148(8), A930, 2001.

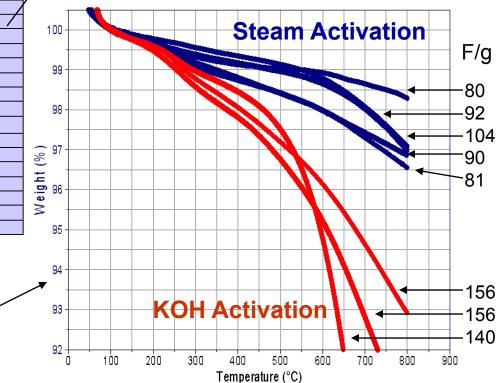
A. Yoshino, J. Electrochem. Soc., 151(12), A218, 2004.

Both systems would benefit from higher-capacitance activated carbons (+ electrode).

Milestones

	FY09	FY10	FY11	FY12
	1Q 2Q 3Q 4Q	1 Q 2 Q 3 Q 4 Q	1Q 2Q 3Q 4Q	1Q 2Q 3Q 4C
Positive (Capacitor Electrode)				
Carbon surface area/pore size analysis				
Electrochemical performance evaluation				
Electrode processing study				
Functional group analysis				
Negative (Battery Electrode)				
Baseline technology evaluation				
Activated-carbon graphitization investigation				
Electrode processing study				
Electrolyte				
Baseline electrolyte/electrode stability study				
High voltage electrolye investigation				
SEI evaluation				
Mixed salt investigation				
Cell Evaluation (Full, 3-Electrode)				
Energy density/cycle life/self discharge/temp			7	
Safety Assessment				

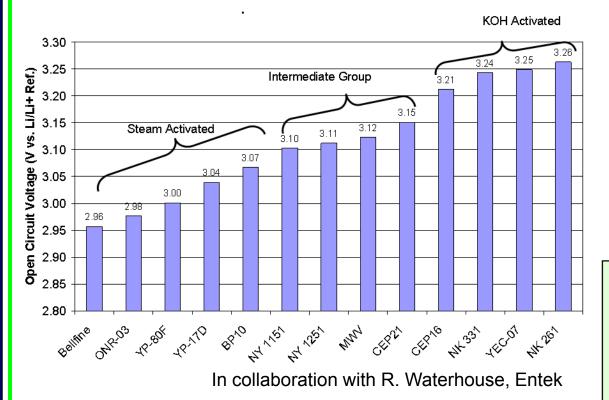
FY09 Accomplishments

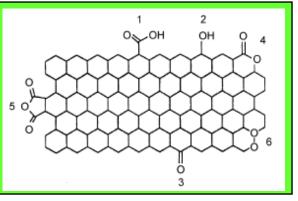

- The electrochemical performance of carbon materials derived from various precursor materials and activated by either steam, KOH or H₃PO₄ was investigated. Excellent performance (~160 F/g) was observed with carbons (~2,000 m²/g) activated by KOH.
- Electrode processing techniques were assessed to ensure that the benefit of high capacitance carbons was not diminished with pore-blocking binders (PVDF, UHMWPE, PTFE). Carbon was distributed to various electrode manufacturers. Electrodes utilizing PTFE binder yielded highest capacitances.

Evaluation of Activated Carbons For Positive Electrode

Capacitance of Various Activated Carbon Electrodes (+) 2" X 3" Symmetric Cells, Cells Charged at 1mA/cm ² and Discharged at 10mA/cm ² Capacitance of 50 th discharge								
	Carbon (% active material)	Carbon Supplier	Binder	1M LiPF。 50%EC:50%EMC (F/g)	2M LiBF₄ AN (F/g)			
	Grade 1 (100)	MarkeTech International	none	22	28			
	RP-15 (92)	Kuraray	UHMW PE	83	90			
	YP-18X (84)	Kuraray	UHMW PE	87	92	/		
	YP-17D (82)	Kuraray	UHMW PE	83	88			
	NK-260 (80)	Kuraray	UHMW PE	85	154			
(NK-261 (82)	Kuraray	UHMW PE	100	156			
	NK-331 (80)	Kuraray	UHMW PE	TBD	140			
	Nuchar R GC (80)	MeadW estvaco	UHMW PE	86	82			
	Supra 50 (80)	N orit	UHMW PE	76	81			
	SX-Ultra (80)	N orit	UHMW PE	52	55			
	BP-10 (80)	Pica	UHMW PE	77	80			
	TDA-1 (81)	TDA	PVDF	100	86			
	TDA-2 (81)	TDA	PVDF	113	101	_		
	TDA-3 (81)	TDA	PVDF	104	91	%		
	TDA-AMS 62C (81)	TDA	PVDF	99	100	÷		
	Generation 1 (80)	U of Kentucky	PVDF	TBD	86	Weight (%		
	Generation 2 (82)	U of Kentucky	UHMW PE	TBD	98	e j		
4	YEC-07 (82)	Fuzhou Yihuan	UHMW PE	T BD	156	3		
	LIC Present Tech.	Proprietary	Proprietary		120			

Last Year:


High capacitance (>150F/g) achieved with carbons activated by KOH


This year:

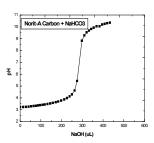
Thermogravimetric analysis (TGA) results show a correlation between weight loss and electrochemical performance.

Correlation of Open Circuit Voltages and Functional Groups

Functional Groups

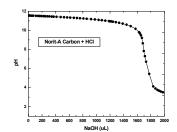
1. carboxyl, 2. phenolic, 3. quinone, 4. lactone, 5. carboxyl anhydride, 6. peroxide

Functional Groups Affect:

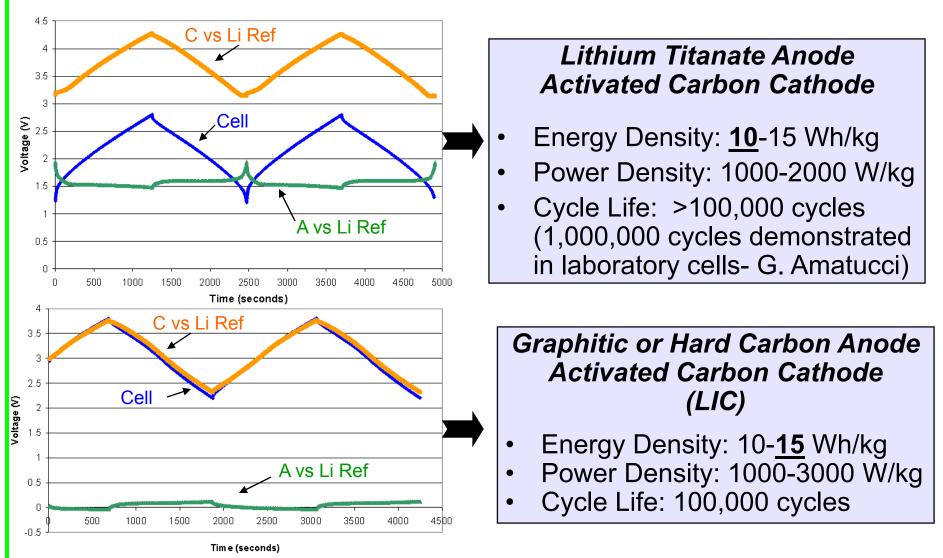

- Capacitance (Redox Reactions)
- Wet-ability
- Open Circuit Voltage
- Voltage Decay
- Cyclability (Electrolyte Decomposition)

Characterization of Carbon Surface Functional Groups by Boehm Titrations

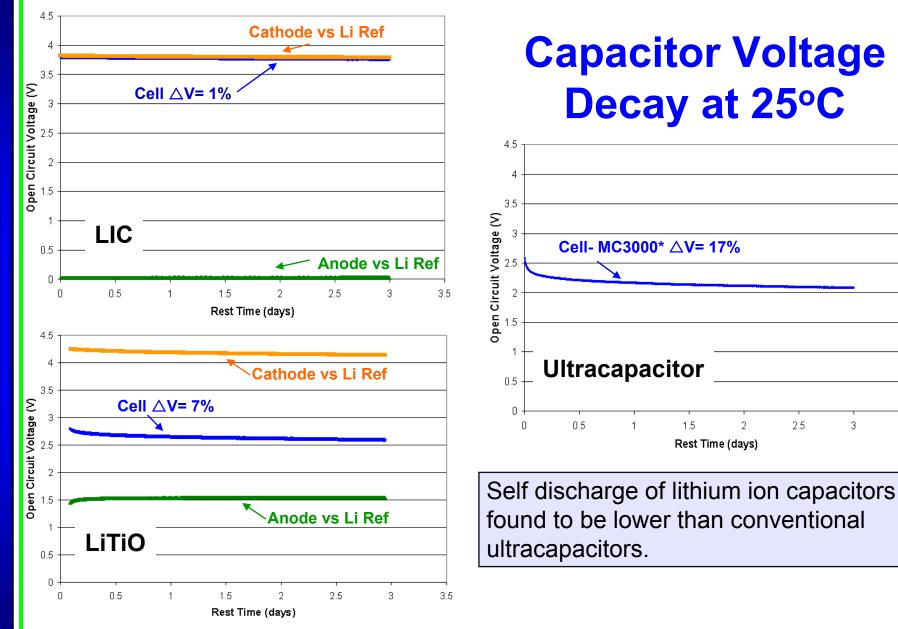
arbon + NaOH	0.05 M NaOH (Sodium Hydroxide)	Sample	Carboxylic	Lactonic	Phenolic	Basic	Acidic	All Groups
	Neutralizes carboxylic, lactonic and phenolic groups -	M-20	11.7	13.5	7.8	45.5	33.0	78.5
		Nor-A	7.4	9.5	0.2	58.2	17.1	75.3
NaOH(uL)		Calgon- PWA	10.4	9.1	0.0	43.5	16.4	59.9
Norit-A Carbon + Na2CO3	0.05 M Na ₂ CO ₃ (Sodium Carbonate) Neutralizes carboxylic and lactonic groups	M-30	21.5	8.0	4.2	33.7	77.2	110.9
		Kuraray- (YP-17D)	2.9	-	28.0	48.7	28.7	77.6
 		Norit SX Ultra	-	2.39	1.53	42.5	3.74	46.24


Results of Boehm Titration (meq./100g)

In collaboration with Deyang Qu, U of Mass.

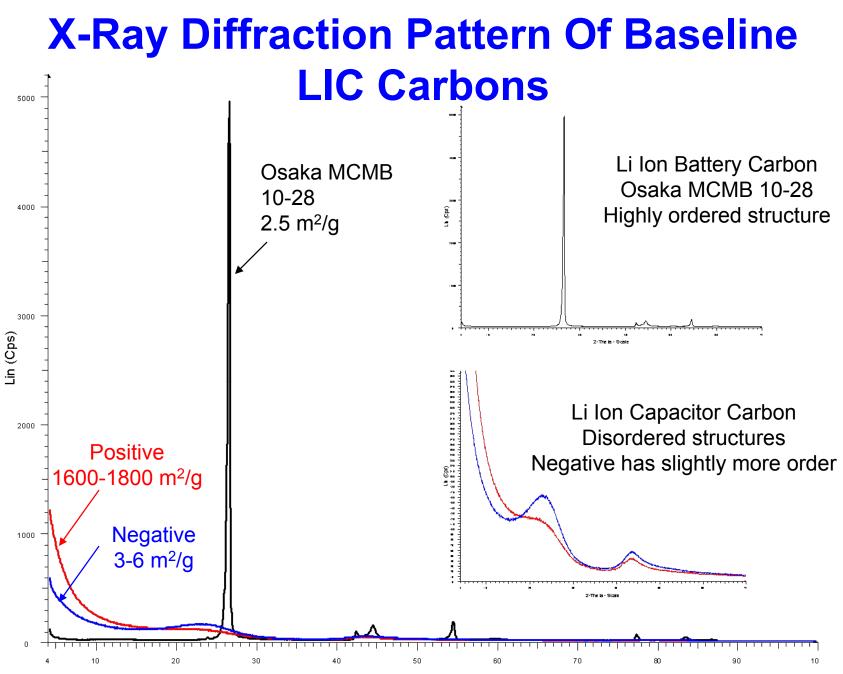

Nor

0.05 M NaHCO₃ (Sodium Bicarbonate) Neutralizes only carboxylic groups



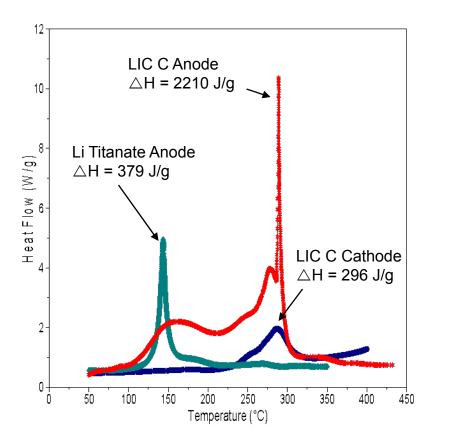
0.05 M HCI (Hydrochloric Acid) Neutralizes all basic groups

Comparison of Li Ion Capacitors



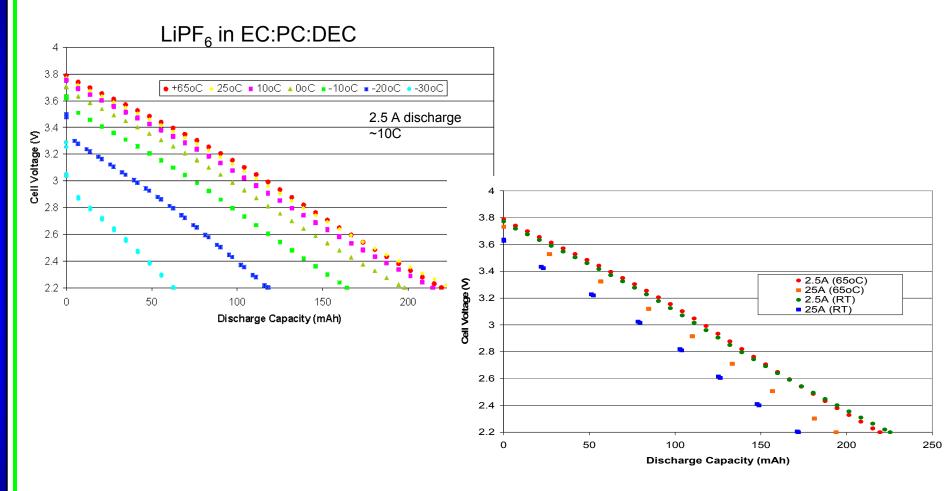
Lithium ion capacitors display high energy density, high power density and long cycle life. Conventional ultracapacitors: 3-5 Wh/kg, 1000 –6000 W/kg, 500,000 - 1M cycles

3.5


*Ultracapacitor data courtesy of Linda Zhong, Maxwell Technologies

²⁻Theta - Scale

Thermal Stability of Ultracapacitor Materials Exothermicity of Electrode/Electrolyte Reactions


Differential Scanning Calorimetry (DSC) of Fully Charged Electrodes

Literature Values						
Electrode						
Lithium Titanate Anode 383*						
Graphitic Carbon Anode 2750*						
Li _{0.55} (Ni _{1/3} Co _{1/3} Mn _{1/3})O ₂ 790**						
 * I. Belharouak, YK. Sun, W. Lu, K. Amine, J. Electrochem. Soc. 154 (2007) A1083. **I. Belharouak, Wenquan Lu, Jun Liu, D. Vissers, K. Amine, J. Power Sources, 174, 905 (2007). 						

- Exothermicity: Amorphous LIC anode < graphitic, lithium ion battery anode
- NSWC and Argonne National Lab △H values for lithium titanate virtually identical
- Capacitor carbon cathode △H value < typical battery cathode material

Effect of Temperature and Discharge Rate on LIC Capacity

- Excellent high temperature performance. Observed 30,000 cycles at 200C rate, 65°C.
- Poor low temperature performance points to a need for improved electrolytes
- Use "lessons learned" from lithium-ion battery development efforts

Summary

- Investigations are underway to develop lithium ion asymmetric electrochemical capacitors. Promises significantly higher energy densities (>20 Wh/kg) than conventional symmetric C/C capacitors (3-5 Wh/kg).
- Higher energy densities achieved with lithium Ion capacitor prototypes utilizing carbon negative electrodes than with lithium titanate electrodes.
- Reactivity of fully-lithiated, amorphous LIC anode and electrolyte is less than a fully-lithiated, graphitic Li ion battery anode and electrolyte (△H = 2210 J/g and 2750 J/g, respectively). LIC anode >> LiTO.
- Shelf discharge of lithium ion capacitors (1-7%) found to be lower than that of conventional ultracapacitors (17%).
- Lithium ion capacitors display poor low temperature performance in comparison to conventional ultracapacitors (activated carbon/activated carbon).

Future Work (FY10-11)

- Continue carbon functional group analysis. Identify groups using TGA/MS. Determine if there is a correlation between nature of functional groups and electrochemical performance (capacity, voltage decay)
- Complete assessment of lithium ion capacitor (LIC and LiTO) baseline electrochemistry. Cells will undergo a series of electrochemical experiments (galvanostatic cycling, cyclic voltammetry, AC impedance) to evaluate the benefits and limitations of the two systems.
- Extend voltage decay investigation to -30°C and 65°C. Identify source of low-temperature performance using 3-electrode cells.
- Explore the effect of activated carbon graphitization on cell performance (capacity, rechargeablility). Understand the properties of the SEI layer that forms.
- Initiate electrolyte solvent system investigation to identify a system with a wide electrochemical voltage window
- Assess safety (at both cell and material level). Compare to conventional ultracapacitors and lithium ion batteries.

Acknowledgement

• The support of this work from DOE-EERE, Office of Vehicle Technologies (Mr. David Howell), is gratefully acknowledged.