High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines

Kenneth Patton & Manuel A. Gonzalez D. GM Powertrain Advanced Engineering Russ Durrett GM R&D May 21, 2009 ace 35 patton

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview – Gasoline Engines

Timeline

- Start April 2005
- End October 2009
- 85% complete

Budget

- Total project funding
 - DOE share \$6.25M
 - GM share \$6.25M
- Funding received in FY08 and FY09
 - GM \$0.44M

Barriers Addressed

- HCCI operating range
- Mixed mode operation
- Lack of cyl press sensor
- System cost

Partners

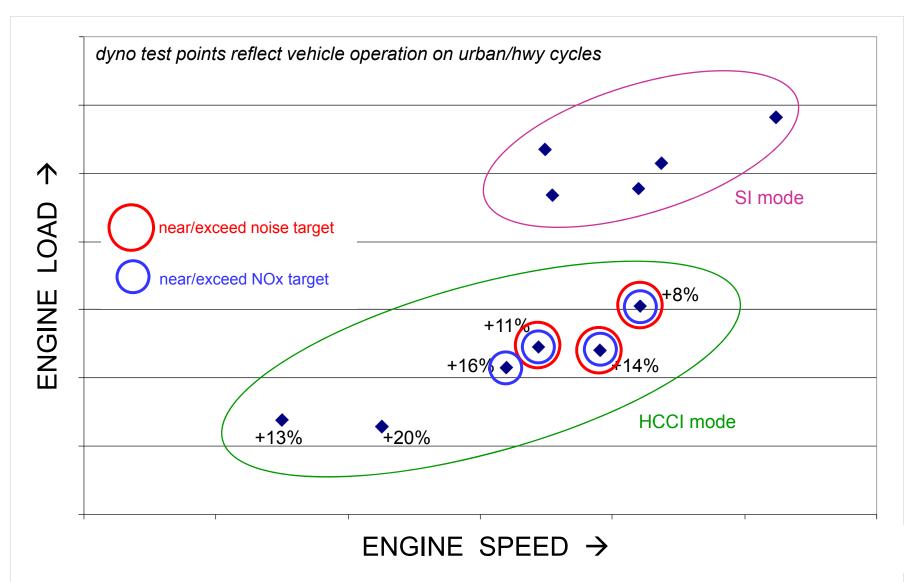
- GM is project lead
- Subcontractors are Sturman Industries (gas – FFVA)
- Several suppliers involved at component level

Objectives – Gasoline HCCI Engines

- Enabling System demonstrate engine on dyno and in vehicle; quantify benefits; reduce cost and risk; identify areas of deficiency
- Fully-flexible System demonstrate engine on spin rig, dyno, and in vehicle; quantify effects on HCCI operating range; reduce cost and risk; identify areas of deficiency

Milestones – Gasoline HCCI Engines

- 2008: fuel consumption benefit of enabling system quantified
- 2008: multicylinder fully-flexible system design released
- 2009: multicylinder fully-flexible system spin rig testing initiated


----- current state ------

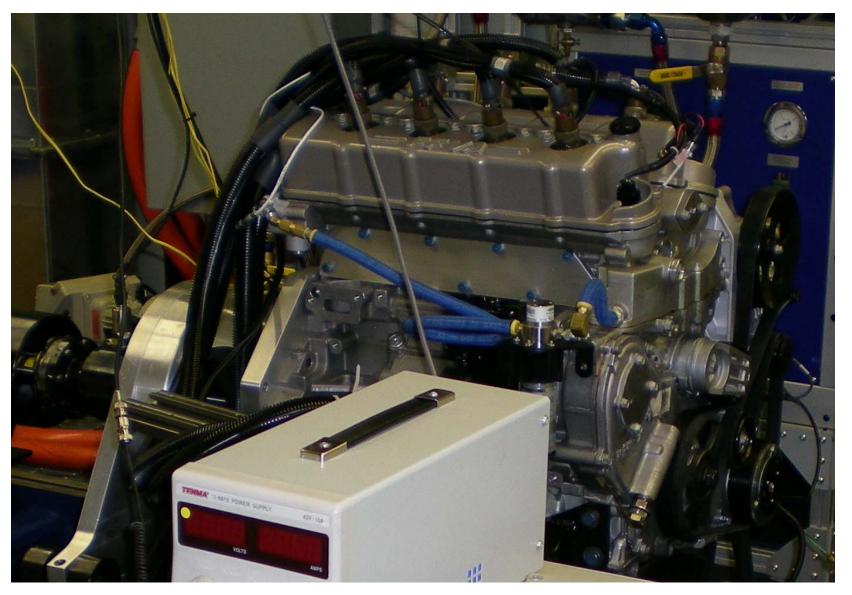
- 2009: multicylinder fully-flexible system spin rig, firing engine testing completed
- 2009: fully-flexible vehicle build completed

Approach – Gasoline HCCI Engines

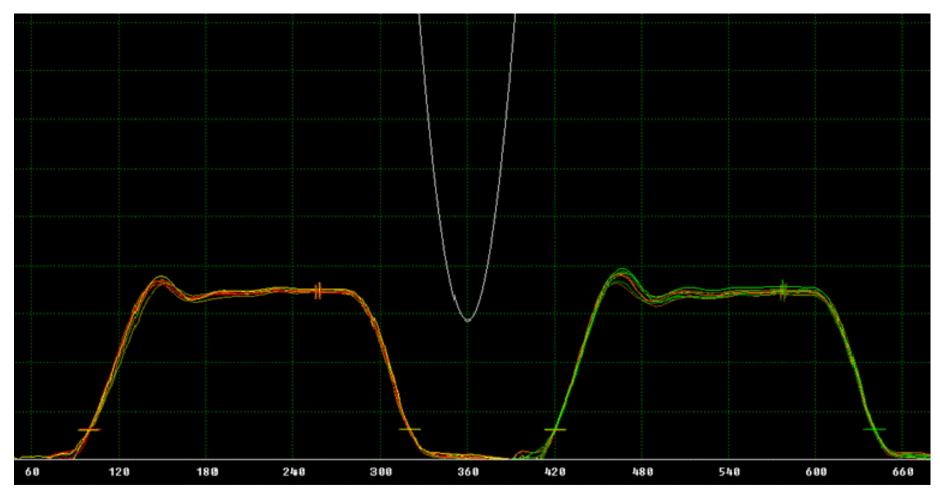
- Use extensive analysis, production-level design practices, build, and test to generate productionfeasible properties which deliver acceptable HCCI operation under expected operating conditions
- Use the opportunity to generate and use hardware to encourage supply base to develop and produce needed components such as cylinder pressure sensors, valve actuation mechanisms
- During design/analysis phases, focus on reducing cost and technical risk of subsystems and components
- Use results of program to protect for this technical content in future production engine designs

Technical Accomplishments *Quantified Efficiency Benefit Due to HCCI*

Technical Accomplishments *Multicylinder Fully-Flexible Engine Design Completed*



GM Ecotec L4-based


Fuel system, combustion chamber layout, and cylinder pressure system from enabling engine design

Electrohydraulic fullyflexible valve actuation (GM+Sturman design) on each intake and exhaust valve

Technical Accomplishments *Multicylinder Fully-Flexible Spin Rig Testing Initiated*

Technical Accomplishments *Multicylinder Fully-Flexible Spin Rig Test Results*

representative results from multicylinder spin rig showing all valves operating at a fixed speed/load condition

Future Work – Gasoline HCCI Engines

- Closeout of enabling system testing (vehicle data)
- Completion of multicylinder fully-flexible spin rig and dyno testing (includes steady-state and transient performance characterization)
- Completion of fully-flexible system vehicle demonstration and testing
- Major known issues/concerns at this time:
 - Operating range of HCCI mode
 - Mode-switching performance
 - Cylinder pressure sensor supplier/hardware viability

Summary – Gasoline HCCI Engines

- This program will result in, and was a major contributor to, successful demonstrations of both enabling and fully-flexible design solutions
- This program has had and will continue to have a significant impact on GM production engine designs
- Guidance from this merit review will influence the remaining work

Overview – Diesel Engines Timeline Barriers

- Start: 2005 Single cylinder engine (SCE) – Fully Flexible Variable Valve Actuation
- End: 3Q2009 SCE and Multicylinder engine (MCE)
- Percent complete: 80%

Budget

- Total project funding
 - DOE share \$6.25M
 - GM share \$6.25M
- Funding received in FY08 and FY09
 - GM \$0.44M

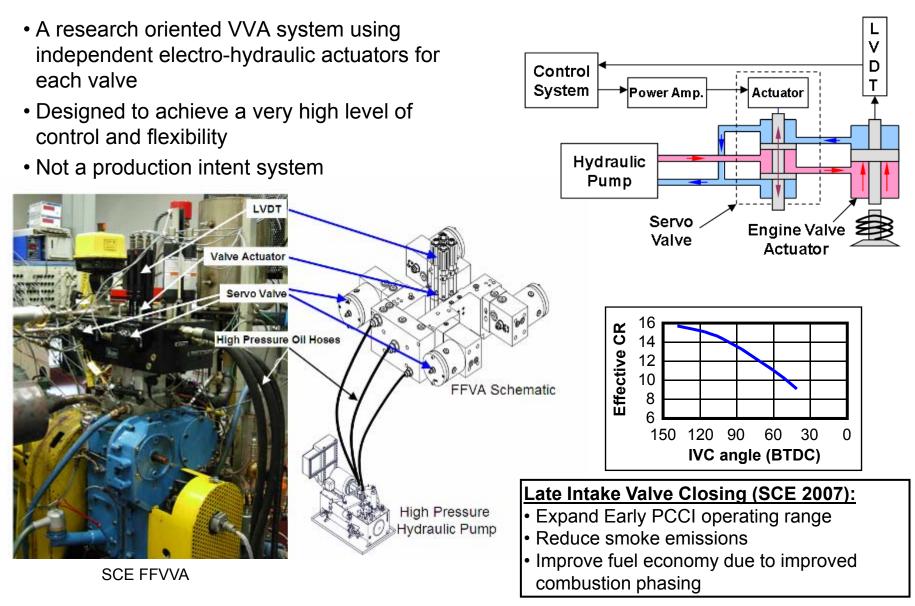
- Barriers addressed
 - To operate smoothly between Low Temperature Combustion (LTC) with extended limits and conventional CIDI using "VVA simple mechanisms" for control of effective compression ratio and internal EGR
 - Expand the useful range of the Early Premixed Charge Compression Ignition (PCCI) LTC mode in order to reduce fuel consumption
 - To reduce engine out emissions
 - To minimize the fuel energy required to raise exhaust gas temperature for catalyst efficiency and regeneration

Partners

- FEV
- TEAM Corporation
- Mechadyne International
- Eaton Corporation
- Mitsubishi Engine NA
- Project lead: GM R&D and Powertrain

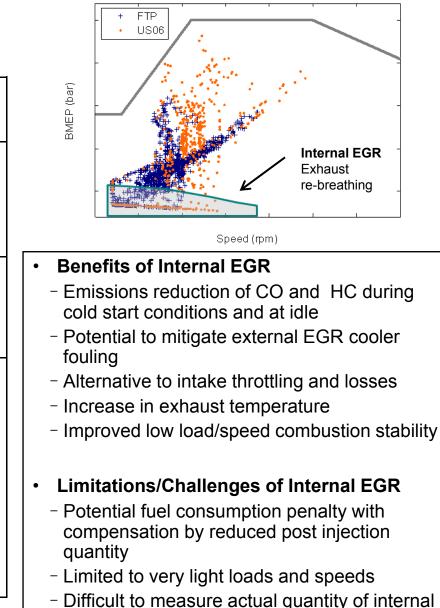
Objectives – Diesel Engines

- Investigate the use of variable valve actuation (VVA) as a means to improve the efficiency of a light duty diesel engine approaching and exceeding Tier 2 Bin 5 NOx emission levels
 - Task 1 Single cylinder engine testing using a fully flexible electro-hydraulic VVA system (FFVVA) – Tier 2 Bin 5 NOx engine-out (EO) targets
 - Task 2 Multi-cylinder engine testing using a "simple mechanism" VVA system EO emission targets for potential vehicle demo using a "simple mechanism" VVA system combined with aftertreatment technology for beyond Tier 2 Bin 5 tailpipe targets
- The fully flexible VVA work helps to understand the upper bound efficiency/emissions potential of VVA on a diesel engine
- The multi-cylinder engine work will aid in understanding the requirements and performance capability towards a production viable VVA system
- Focus on developing enabler technologies for tailpipe emission levels beyond Tier 2 Bin 5 that also enhance fuel economy


Milestones – Diesel Engines

- 2007: Late Intake Valve Closing investigation completed in SCE
- 2008: Internal EGR investigation completed in SCE
- 2009: Multicylinder testbed with baseline prototype engine testing initiated
- ----- current state ------
- 2009: Design of "FFVVA system" for upgraded SCE in-progress
- 2009: 1D Modeling and 3D design for "VVA simple mechanisms" and charging/EGR in-progress
- 2009: Modifications to MCE build with intake valves phasing, 2-step exhaust valves and upgraded series sequential charging system initiated

Approach – Diesel Engines


- Use extensive analysis, production-level design practices, build, and test to generate productionfeasible properties which deliver acceptable Low Temperature Combustion (LTC) operation under expected operating conditions
- Use the opportunity to generate and use hardware to encourage supply base to develop and produce needed components such as variable valve actuation mechanisms and charging systems
- During design/analysis phases, focus on reducing cost and technical risk of subsystems and components
- Use results of program to protect for this technical content in future production engine designs

Approach – Single Cylinder Engine

Technical Accomplishments Identified Effects of Internal EGR in SCE

Strategy	SCE Fully Flexible Variable Valve Actuation	Observations	
Recompression (Early exhaust valve closing + late intake valve opening)		 Pumping losses Needs to change the lift profiles of all four valves 	• E
Intake Re- breathing (Intake valve re- opening during exhaust stroke)		 Higher heat losses than exhaust re-breathing More difficult to open than exhaust valve 	
Exhaust Re- breathing (Exhaust valve re-opening during intake stroke)		 Only one exhaust valve lift profile need to be changed Multiple profiles possible and combined with intake - exhaust pressure control Lower pumping losses than recompression Easier to be opened than intake valve Less heat losses than intake re-breathing 	

EGR for calibration purposes

20

Technical Accomplishments

Single Cylinder FFVVA Engine with updated MCE head and fuel system – In progress

Multicylinder Engine with VVA Mechanisms Design/Integration In-progress

Two-step Roller Finger Followers

Two-stage series sequential turbochargers (concept)

> 4.5L V8 Diesel Engine Testbed

> > 21

Future Work – Diesel Engines

- Completion of updated fully-flexible valve actuation in SCE and testing for further understanding of thermodynamics
- Multicylinder with "VVA simple mechanism" and dyno testing (includes steady-state and initial transient performance characterization)
- Major known issues/concerns at this time:
 - VVA transient response
 - Charging response
 - Operating range of LTC mode
 - Warm-up performance

Summary – Diesel Engines

- This program will result in, and was a major contributor to, successful understanding of the technical merit and impact of VVA strategies on fuel efficiency and emissions
- This program will have an impact on future GM production engine designs
- Guidance from this merit review will influence the remaining work