

# High-Dielectric-Constant Capacitors for Power Electronic Systems\*

U. (Balu) Balachandran Argonne National Laboratory

Team members at Argonne: B. Ma, M. Narayanan, S. Liu, S. Tong, T. H. Lee, S. E. Dorris

**Project ID# APE-008** 

\*Work supported by the U.S. Department of Energy, Vehicle Technologies Program.

This presentation does not contain any proprietary, confidential, or otherwise restricted information



# **Overview**

## Timeline

- Project start date: FY05
- Project end date: FY13
- Project continuation & direction determined annually by DOE
- Percent complete: 75

## **Budget**

- Total project funding
  - DOE share: 100%
- Funding received in FY11: \$2050K
- Funding for FY12: \$1950K

## **Barriers addressed**

 A & C (Cost & Weight): Overall size and cost of inverters

Capacitors are a significant fraction of the inverter volume (≈35%), weight (≈23%), and cost (≈23%).

 D (Performance & Lifetime): High-temperature operation

The performance and lifetime of presently available capacitors degrade rapidly with increasing temperature (ripple current capability decreases with temperature increase from 85sc to 105sc).

### **Partners**

- Penn State University
- Delphi Electronics
- Project Lead: Argonne National Laboratory

# **Relevance - Objectives**

- **Overall objective:** Develop technology for fabricating high performance, economical, ceramic dielectric capacitors for power electronic systems in electric drive vehicles. The purpose is to build and test a capacitor prototype capable of operating at 140°C at 450 V.
  - DC bus capacitors for inverters (DOE-APEEM Goals)
  - (450 V, 1000 μF, <3 mΩ ESR, < 5 nH ESL, 100 A ripple current, 140 »Ô, benign failure)</li>
- **Specific objective for March '11 March '12:** Advance the proven laboratory scale technology to produce high-voltage capable dielectric films on Ni foils ("film-on-foils") that will have the potential, upon scale-up, to meet DOE-APEEM goals.
- The dielectric films will have:
  - An operational temperature range of -50°C to +140°C
  - 450 V DC bus capability (peak transient 650 V)
  - High k (>100) under bias voltage of 450 V and breakdown strength (≈200 V/µm, i.e., ≈2 MV/cm) to meet weight & volume target

## Relevance to Overall DOE Objectives of Petroleum Displacement

- Future availability of advanced high-temperature (together with lower cost, weight, & volume) inverters will advance the marketplace application of highly fuel-efficient & environmentally beneficial electric drive vehicles.
- Current polymer capacitors have temperature limitation.
- Capacitors have direct impact on overall size, cost, & performance of inverters.

This project is developing dielectric films that, due to their increased capacitance density & better capability for high temperature operation, have potential to reduce the size, weight, and cost of capacitors in inverters (addressing barriers A, C, & D).

## **Milestones**

| Month/Year | Milestones or Go/No-Go<br>Decision                                                                 | Progress Notes                                                                                                                                                                                                                                                                                                                                                           |
|------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sept. 2011 | Fabricate high-voltage-capable film-on-foils with high breakdown strength.                         | Fabricated ≈3-µm-thick dielectric film with k ≈110 & loss ≈ 0.004 (i.e., 0.4%) @ 300 V bias at room temperature (Slide 9).                                                                                                                                                                                                                                               |
| Sept. 2012 | Fabricate a high-voltage-capable,<br>multilayer capacitor with end-<br>termination.                | Fabricated a 10 µF multilayer capacitor<br>(unbiased) and ≈3.5 µF at 54 V bias with<br>end termination by stacking film-on-foils<br>with Cu end termination (Slide 10).                                                                                                                                                                                                  |
| Dec. 2012  | Identify fabrication methodology<br>to improve dielectric properties<br>and reduce capacitor cost. | Fabricated PLZT films with thin $TiO_2$<br>insertion layers that doubled the<br>breakdown voltage and decreased the<br>loss by $\approx$ 50%. Process needs<br>optimization (Slide 12). Effort to prepare<br>sub-micron size PLZT powder is on-<br>going. Sub-micron size powders are<br>essential for the success of developing<br>very fast film deposition processes. |

# **Technical Approach/Strategy**

- Our approach is to develop high-dielectric-constant, hightemperature ceramic (Pb-La-Zr-Ti-O, PLZT) films on basemetal foils ("film-on-foil") that are either stacked on or embedded directly into the PWBs.
  - PLZT possess high dielectric constants, breakdown fields, and insulation resistance. With their ability to withstand high temperatures, they can tolerate high ripple currents at under-thehood conditions.
  - Integration of base-metal (Ni, Cu) electrodes provides a significant cost advantage over noble metal electrodes.
  - Stacked and/or embedded capacitors significantly reduce component footprint, improve device performance, provide greater design flexibility, achieve high degree of volumetric efficiency with less weight, and offer an economic advantage.

#### Argonne's project addresses the technology gap in an innovative manner

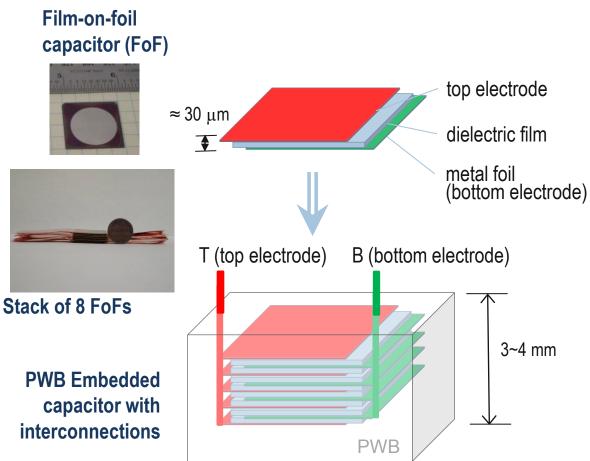
# **Uniqueness of Project and Impact** (caps embedded directly into PWB – caps are "invisible")

#### **Basic Element**

Metal foil coated with thin film Pb-La-Zr-Ti-Oxide (PLZT) dielectric

- PLZT/Ni Film-on-Foil
- PLZT/Cu Film-on-Foil

#### **Component**


Stack on or embed coated foils directly into printed wire board for power electronics in EDVs

#### **Advantages**

Reduces component footprint

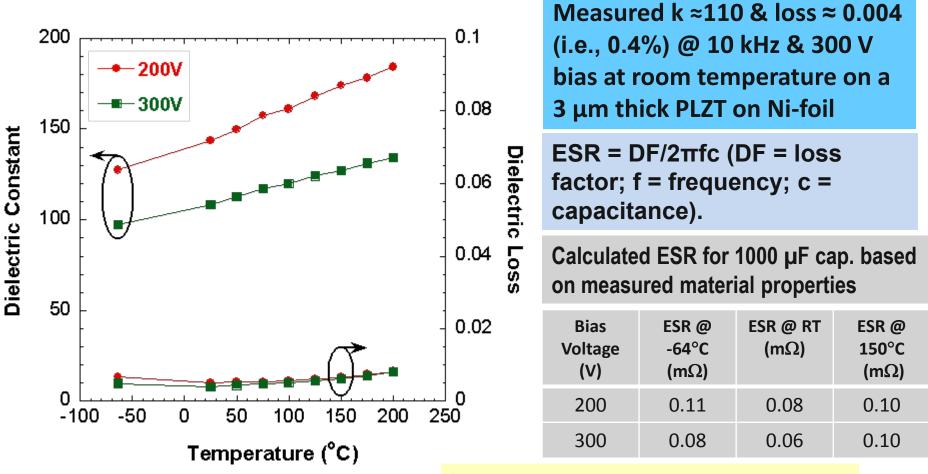
Shortens interconnect lengths

Reduces parasitic inductive losses & electromagnetic interference



Reliability is improved because the number & size of interconnections are reduced. Solder joints that are most susceptible to failure are no longer needed.

## **Technical Accomplishments & Progress**


- Measured k ≈110 & loss ≈0.004 (0.4%) at 300 V bias on a
  ≈3.0 µm-thick film (for comparison, k of polymer films are ≈5).
- Fabricated a 20-mm diameter film-on-foil (PLZT thickness ≈0.7 µm) with capacitance of ≈3 µF at 15 V/µm bias.
- Fabricated ≈10 µF capacitor (unbiased) by stacking 1" x 1" film-on-foils (capacitance density ≈4.3 µF/cm<sup>3</sup>). Measured ≈3.5 µF at 54 V bias.
- Measured factor of two increase in breakdown strength and ≈50% decrease in loss by inserting thin TiO<sub>2</sub> layers within PLZT film.
- Dielectric properties under bias (300 V) show an increase in k and decrease in loss with temperature increasing from -50 C to +150sc.
- Dielectric films are thermally cycled (about 1000 cycles) between -50šC and +150šC with no measurable degradation in k.
- Over 50 publications and presentations have been made.
  One patent was issued & four patent applications were filed.

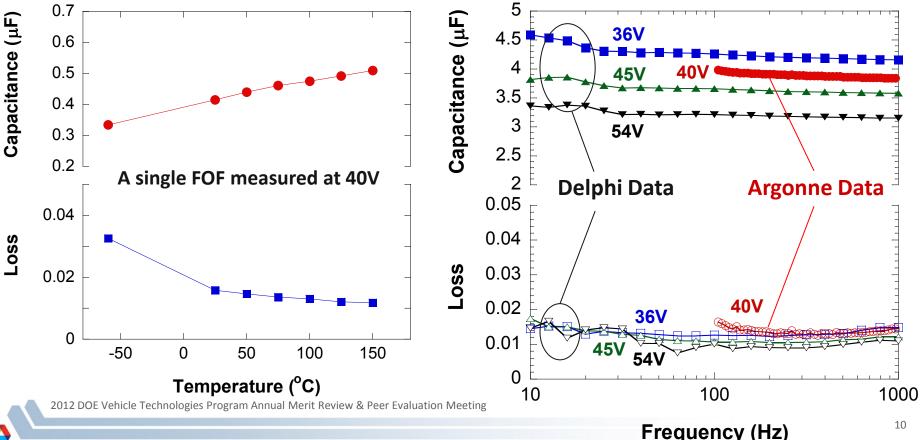




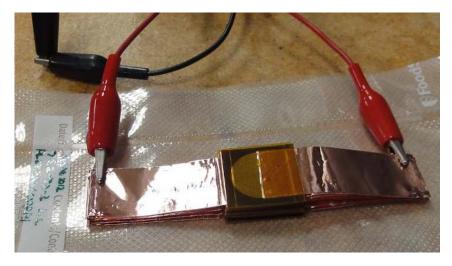
Argonne's capacitor technology is recognized with a 2011 R&D 100 Award

#### Technical Accomplishments/Results (Contd.) Temperature dependent properties - PLZT/Ni




**DOE-VT DC Bus Capacitor Goal**  $\leq$ **3 m** $\Omega$ 

ANL's film-on-foil has high dielectric constant at high voltages and high-temperature capability


#### **Technical Accomplishments/Results (Contd.) Prototype Multilayer Capacitor with Leads**

- Fabricated a stacked capacitor with copper termination, measured capacitance ≈10 µF (cap. density  $\approx$ 4.3 µF/cm<sup>3</sup>, unbiased), and capacitance ≈3.5 µF at 54 V
- Capacitor was tested at Delphi and confirmed our results





#### Technical Accomplishments/Results (Contd.) Prototype Multilayer Capacitor with Leads



#### Calculation of the Volume of 1000 µF/450 V Cap:

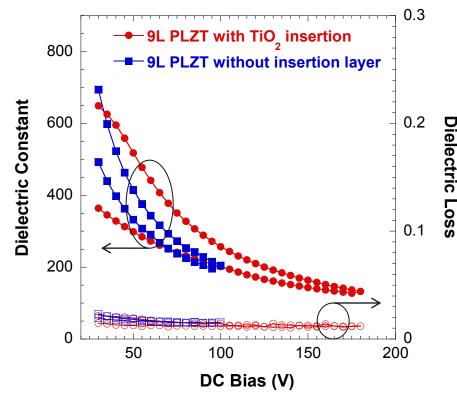
 Volume will be ≈0.55 L if ≈80 µm thick Ni foil & ½ oz. Cu ribbon (≈17 µm) is used.

#### >DOE-VT DC Bus Capacitor Goal ≤0.6 L

≻Volume and capacitance of current polymer film capacitor module/housing in Camry ≈2.6 L (2,098 µF), Lexus LS 600h ≈4.0 L (2,629 µF) & 2010 Prius ≈2.0 L (888 µF). Ref: ORNL/TM-2007/190, ORNL/TM-2008/185, & ORNL/TM-2010/253 reports.

#### ANL film-on-foils have potential to meet volumetric target

2012 DOE Vehicle Technologies Program Annual Merit Review & Peer Evaluation Meeting


#### For the fabrication we used:

- Nine film-on-foils that were coated with 20-mm-dia. top electrodes
- ➢ Ni foil thickness ≈400 µm
- ➢ PLZT film thickness ≈3 µm
- ➤ Cu ribbons (thickness ≈80 µm)

Measured capacitance ≈3.5 μF @ 54 V bias (Cap. density ≈1.5 μF/cm<sup>3</sup> using thick Ni & Cu ribbons and lots of gap between individual films)

#### **Technical Accomplishments/Results (Contd.)** Enhancement of dielectric properties via superstructure film growth

1



- 0 ln(ln(1/(1-p))) -1 -2 Mean V\_=120V -3 0 Without insertion -4 1000 10 100 **Breakdown Voltage (V)** 2 1 0 ln(ln(1/(1-p))) -2 Mean V\_=230V -3 With TiO insertion -4 10 100 1000 Breakdown Voltage (V)
- Measured Improved dielectric properties with insertion of thin intermediate layers
- 2X improvement in breakdown strength
- ≈50% decrease in loss

# **Collaboration and coordination with other institutions**



Dielectric characterization, reliability testing, electrode design & deposition, defining capacitor specifications & test protocol for APEEM

DELPHI

Industry partner/CRADA, inverter design engineering (direct customer for the technology), stacking & connecting multilayer film-on-foils (Delphi works closely with a PWB manufacturer)





Electrode deposition, defining capacitor specifications & test protocol for APEEM

Strain tolerance of film-on-foils

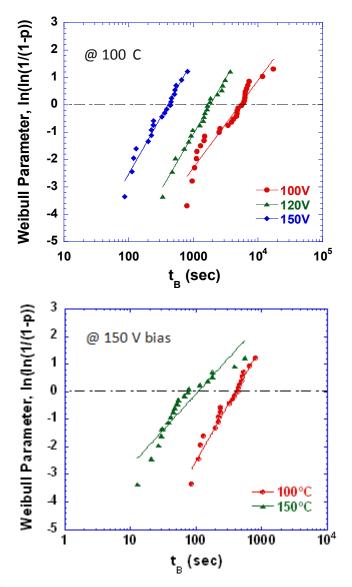
## **Proposed Future Work**

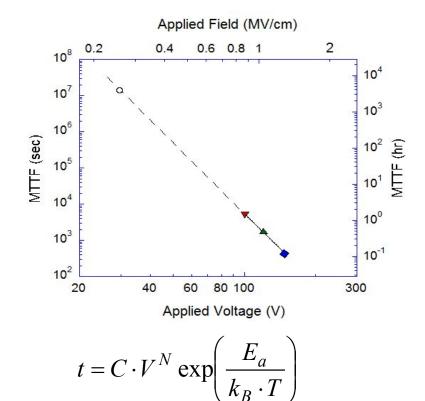
The primary emphasis of our future work is on advancing the proven laboratory scale film-on-foil technology and fabricating  $\approx$ 10 µF, high-voltage-capable (operating voltage of 450 V) capacitors.

- Produce high-voltage (450 V) capable PLZT film-on-foils
  - Optimize precursor solution chemistry [Polyvinylpyrrolidone (PVP)-modification] to adjust viscosity & increase critical per coating thickness due to structural relaxation
  - Incorporate superstructure film growth process (insertion of thin TiO<sub>2</sub>, ZrO<sub>2</sub>, HfO<sub>2</sub> layers) to improve dielectric properties
- Develop fabrication methodology to reduce capacitor cost
  - Develop process for making sub-micron PLZT powders
  - Fabricate PLZT films by processes at rates much faster than obtained from current spin coating method (colloidal spray & aerosol deposition, screen printing)

# **Proposed Future Work (Contd.)**

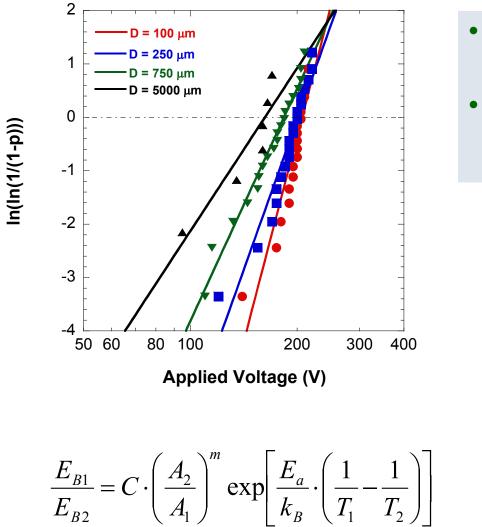
- Develop electrode architecture for carrying large currents and provide graceful failure in large-area PLZT films
  - Evaluate effects of electrode material, size, shape, and thickness on capacitor performance
  - Adopt segmented electrode architecture to overcome charge accumulation
- Fabricate & test multilayer capacitors and provide samples to partners for testing/validation of results
  - In collaboration with partners, results will be analyzed and course of action will be determined


## **Summary**

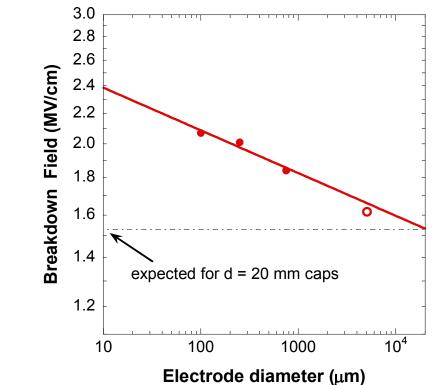

We are developing dielectric films with increased capacitance density & capability for high temperature operation that have potential to reduce the size, weight, and cost of capacitors in inverters in electric drive vehicles.

- Made PLZT films with k ≈ 110 & loss ≈0.004 (0.4%) under 300 V bias; breakdown field ≈ 270 V/µm.
- Fabricated ≈10 µF capacitor (unbiased) with end-termination, cap. density ≈4.3 µF/cm<sup>3</sup>, and measured capacitance ≈3.5 µF at 54 V bias.
- Based on measured properties, there is no decrease in ripple current capability up to ≈200 »Ô.
- Improved dielectric properties are measured in PLZT films with thin TiO<sub>2</sub> insertion layers.
- Based on measured values at 300 V, the volume of a 1000 µF/450 V capacitor will be 0.55 L (DOE-OVT goal ≤0.6 L).
- Collaborating with partners to overcome the barriers of this technology for inverter application and to commercialize the technology.

## **Technical Back-up Slides**


## HALT Analysis on PLZT/LNO/Ni Films

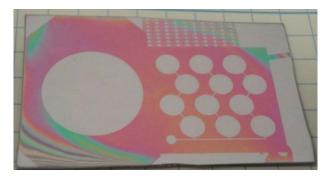





- Lifetime estimated by measuring time to failure vs. applied voltage as function of temperature.
- Mean time-to-failure (MTF), voltage acceleration factor (N), and activation energy (E<sub>a</sub>) are obtained from reliability measurement.

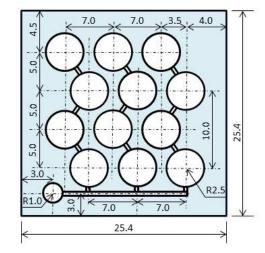
### **Breakdown Strength of PLZT/LNO/Ni Films**




- Breakdown strength was measured on capacitors of various electrode sizes.
- Extrapolated the date for prediction of breakdown strength of lager size capacitors.



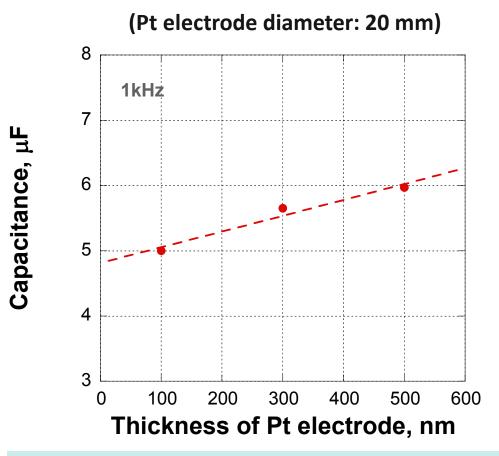
# **Electrode segmentation for large area films**


(For improved breakdown strength, E<sub>b</sub>)

Before clearing test



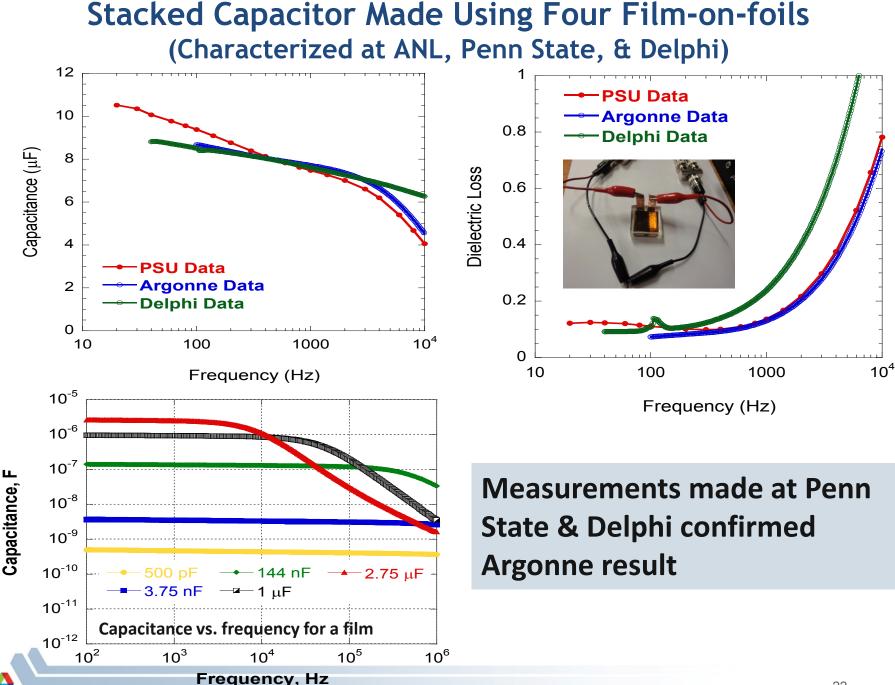
After clearing at 20V






#### Mask for segmented electrodes

The sample with segmented electrode exhibited breakdown voltage of 45 V vs. 18 V for sample with 20-mm-dia electrode, a 150% improvement.


## **Effect of Electrode Material & Thickness**



| Electrode | Thickness (nm) | Ω/□  |
|-----------|----------------|------|
| Pt        | 50             | 2.0  |
| Pt        | 100            | 1.0  |
| Pt        | 500            | 0.2  |
| Al        | 50             | 0.5  |
| Al        | 100            | 0.25 |
| Al        | 500            | 0.05 |

 $\rho$  of Pt = 1.05 x 10<sup>-7</sup> Ω-m  $\rho$  of Al = 2.82 x 10<sup>-8</sup> Ω-m

- •Electrodes should carry large currents and, at the same time, provide benign failure mode in multilayer architecture.
- •Electrode surface resistivity is consistent with commercial polymer film capacitors carrying large ripple currents.

