Gasoline-like fuel effects on advanced combustion regimes

Project ID# FT008

2011 U.S. DOE Hydrogen and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

May 9-13, 2011

Investigators

Jim Szybist, Adam Weall, Adam Youngquist, Bruce Bunting, Scott Sluder, Mike Bunce, Kukwon Cho, Scott Curran, John Storey, Teresa Barone and Tom Briggs

> Organization Oak Ridge National Laboratory

DOE Management Team

Steve Goguen, Kevin Stork, and Steve Przesmitzki

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Presentation Outline

- Project Overview
- Study 1: Fuel effects of reactivity controlled compression ignition (RCCI) combustion
 - Objectives and milestones
 - Approach
 - Technical accomplishments
- Study 2: Fuel effects of stoichiometric spark-assisted HCCI combustion
 - Objectives and milestones
 - Approach
 - Technical accomplishments
- Study 3: Fuel and fueling effects of particle emissions from a gasoline direct-injection engine
 - Objectives and milestones
 - Approach
 - Technical accomplishments
- Proposed future work
- Summary and conclusions
- 2 Managed by UT-Battelle for the U.S. Department of Energy

Project Overview

Broad Barrier: Inadequate data and predictive tools to assess fuel property effects on advanced combustion, emissions, and engine optimization

Our role: Determine the effects of fuel properties and chemistries on combustion performance and emissions for advanced combustion regimes. Work toward real-world efficiency, emissions, and petroleum displacement.

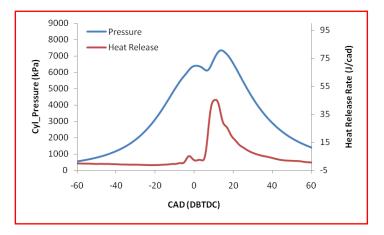
Budget	Project Timeline
 FY10: \$1,470 k FY11: \$200 k 	 Current fuels research program started at ORNL in 2004 Investigations have evolved, and will to continue to evolve, with emerging research needs

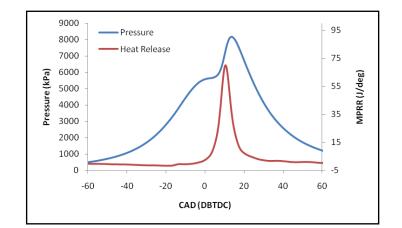
Industrial Partnerships and Collaboration

- •Participation in Model Fuels Consortium, led by Reaction Design
- •Members of the AEC/HCCI working group led by Sandia National Laboratory
- •CRADA project with Delphi to increase efficiency of ethanol engines
- •Related funds-in project with an OEM
- •Collaboration with University of Wisconsin
- •Collaboration with University of Michigan

Study 1: Fuel effects of Reactivity Controlled Compression Ignition (RCCI) combustion

Objective: Demonstrate efficiency in light-duty engines over a large section of the engine operating map using advanced combustion techniques.


- Approach: Partner with the University of Wisconsin (UW) to apply the RCCI combustion concept to a multi-cylinder engine.
- UW has demonstrated 52% indicated thermal efficiency with RCCI in a light-duty single-cylinder engine
- ORNL's role is to adapt the combustion concept to a multi-cylinder engine and overcome all of the practical implementation barriers



Modified intake manifold

RCCI Results at 2000 rpm 6 bar BMEP

Current Status:

- System is fully operational and producing results
- Results show comparable efficiency to diesel combustion with very low NOx and smoke emissions
- System optimization is ongoing
 - Cylinder-to cylinder balancing
 - Air management and EGR distribution
- Complete details in ACE016

	Conventional Diesel	RCCI (81%gasoline)
BTE (%)	35.56	35.04
NOx (ppm)	216	19.9
HC (ppm)	136	3821
CO (ppm)	119	1673
FSN (-)	1.23	0.00
EGR Rate (%)	17.2	32.85
Boost (bar)	1.38	1.26

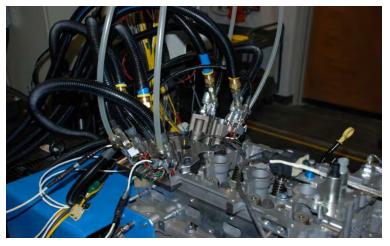
Study 2: Fuel effects of stoichiometric sparkassisted HCCI combustion

Specific Barrier: Advanced combustion strategies are being developed for higher efficiency operation. Simultaneously, fuel diversity is increasing due to EISA and other factors. This work aims to identify fuel-related problems and opportunities as they pertain to advanced combustion strategies.

Objectives:

- 1. Characterize stoichiometric SA-HCCI combustion with a baseline gasoline, including operable load range, emissions, combustion characteristics and thermal efficiency.
- 2. Complete Joule Milestone associated with SA-HCCI:

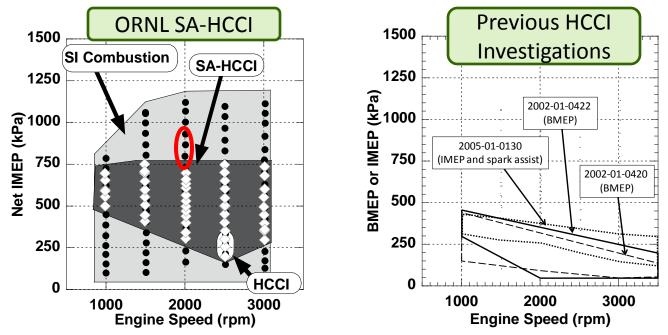
Characterize the potential for gasoline-like bio-fuels to enable efficiency improvements of at least 5% (compared to conventional spark-ignited operation with gasoline) within the FTP drive-cycle load range using the ORNL spark-assisted HCCI operating methodology.


Status: Milestone completed using E85 🗹

Stoichiometric SA-HCCI approach: Single cylinder research engine with Sturman hydraulic valve actuation (HVA)

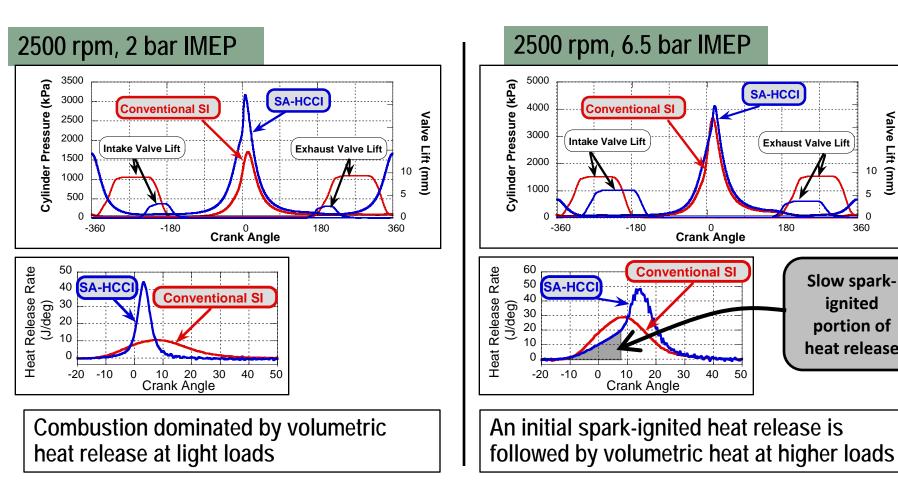
- Modified 2.0L GM Ecotec engine with direct injection
- Cylinders 1-3 are disabled, cylinder 4 modified for Sturman HVA system
- Engine management performed with Drivven engine controller
- Custom pistons to increase compression ratio

	SI Combustion	SA-HCCI
Fuel Rail Pressure (bar)	95	95
Fuel Injection Timing (CA)*	-280	-340
Equivalence Ratio	1.0	1.0
Intake Valve Opening (CA)*	-344	-313 to -234
Intake Valve Closing (CA)*	-180	-180 to -124
Intake Valve Lift (mm)	9	3 to 6
Exhaust Valve Opening (CA)*	180	170
Exhaust Valve Closing (CA)*	349	234 to 313
Exhaust Valve Lift (mm)	9	2 to 3.5
*0 CA refers to combustion TD	С	


Bore	86 mm	
Stroke	86 mm	
Connecting Rod	145.5 mm	
Fueling	Direct Injection	
Compression Ratio	11.85	
Valves per Cylinder	4	

7 Managed by UT-Battelle for the U.S. Department of Energy

High load limit increased to 7.5 bar from 1000 to 3000 rpm with operating strategy


Attributes of the advanced combustion strategy

- Stoichiometric A/F ratio for compatibility with 3-way catalyst
- Spark assist
- Negative valve overlap for internal EGR

- Unthrottled operation
- Moderate pressure rise rate through control of spark, DI fuel injection timing and valve timing

SA-HCCI is a true mixed-mode combustion strategy

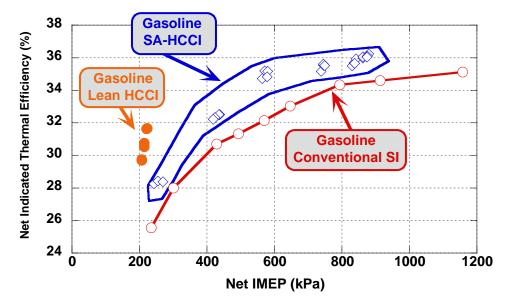
Pressure rise rates are moderate at all engine loads (<7 bar/CA)

Achieved through control of DI fuel injection timing, spark timing, and timing of valve events

Valve Lift (mm)

360

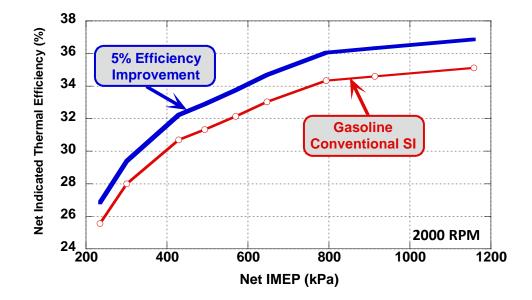
Slow spark-


ignited

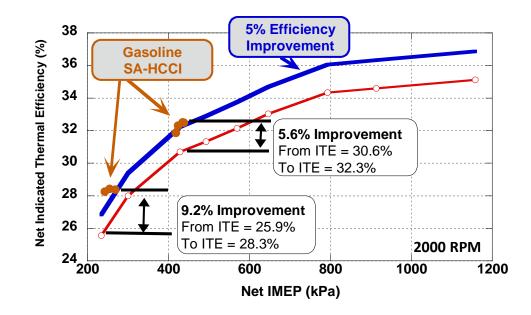
portion of

heat release

180

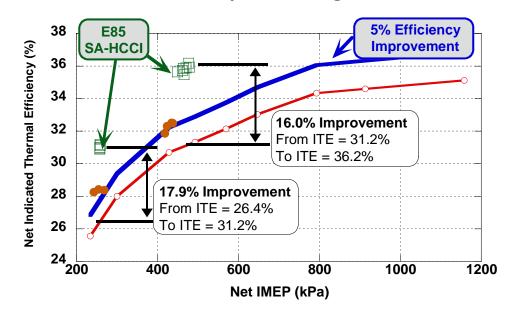

Stoichiometric SA-HCCI combustion improves fuel efficiency up to 9% compared to SI combustion

- Advantages over conventional SI
 - Efficiency improvement of 3-9% over operable load range
- Advantages over lean-burn HCCI
 - Larger operating load range
 - Compatibility with conventional 3-way catalyst for NOx aftertreatment (stoichiometric A/F)
- Disadvantages over lean-burn HCCI
 - Smaller efficiency improvement over conventional SI combustion



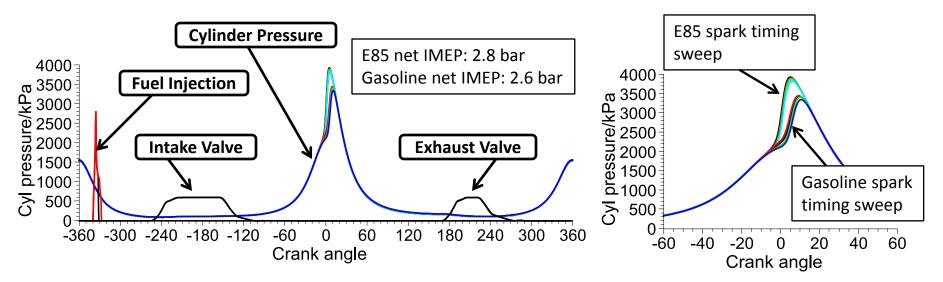
Joule Milestone: 5% efficiency improvement with bio-fuel using ORNL SA-HCCI combustion strategy

Joule Milestone: 5% efficiency improvement with bio-fuel using ORNL SA-HCCI combustion strategy

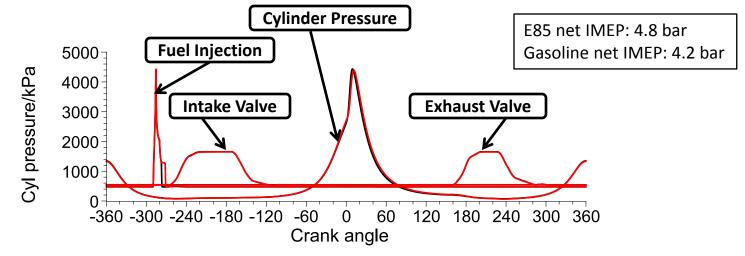


Efficiency target in milestone can be achieved with conventional gasoline

Joule Milestone: 5% efficiency improvement with bio-fuel using ORNL SA-HCCI combustion strategy


Joule milestone accomplished using E85 with efficiency improvements more than triple the target.

- Substantial efficiency improvement over gasoline under SA-HCCI conditions
- E85 exhibits additional unique behavior
 - E85 differences are subject of ongoing analysis
 - Efficiency increase possibly explained by molar expansion ratio effect (see ACE015)


E85 autoignites more readily than gasoline under constant operating conditions at light engine loads

- Combustion phasing for E85 is more advanced than for gasoline under the same valve events and start of injection timing at light load conditions
 - E85 has a much higher octane number than gasoline
- Enhanced ignitibility observations could be due to two different phenomena and is the subject of planned future research
 - Engine operating in high T, low P ignition regime (i.e. "beyond MON") regime where neither RON nor MON adequately represent the propensity for autoignition
 - > Fuel injected into NVO undergoes reforming, altering ignition chemistry

E85 and gasoline behave similarly at higher engine loads

- E85 and gasoline exhibit similar combustion stability, pressure rise, and combustion phasing
- Fuel SOI timing is later at higher load condition
 - Fuel injected into lower temperature and pressure section of negative valve overlap
 - Lower probability of reactions occurring during NVO

Study 3: Enabling high efficiency ethanol engines CRADA project with Delphi Automotive systems

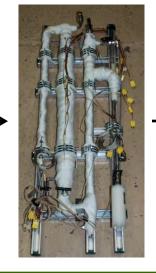
• Specific Barrier: EISA legislation requires increased use of renewable fuels, but reduced fuel economy is a market barrier for E85

☑ Objective 1 accomplished in in FY10: Demonstrated a reduction in the fuel economy gap between E85 and gasoline by taking advantage of unique E85 fuel properties.

Accomplishment: Reduced fuel economy gap by 20% (SAE 2010-01-0619) while maintaining gasoline compatibility and OEM efficiency

 Objective 2: Characterize particle emissions on an engine intended for high efficiency operation with ethanol fuels (study leveraged with health impacts – ACE045)

Objective 2 accomplished during FY11

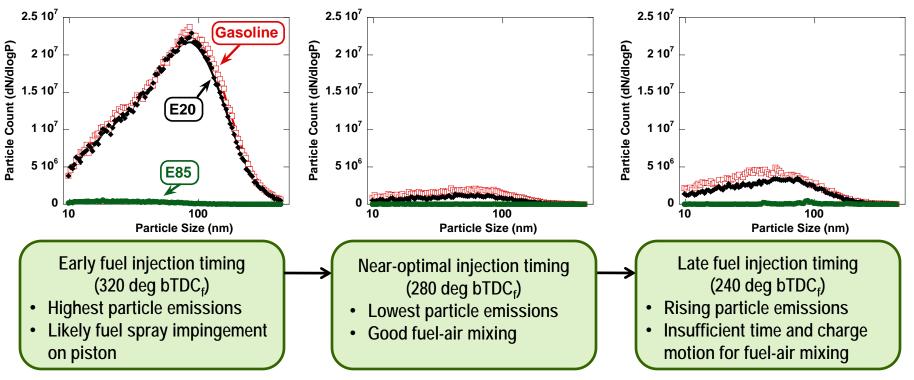

Motivation for Objective 2: Particle number emission regulations under consideration for SI engines, and engines optimized for E85 have several unconventional features

- Direct fuel injection
 - Fuel/air mixing
 - Fuel impingement on piston
- High compression ratio
 - Impingement due to smaller clearances
- Flexible cam-based valvetrains with 2step cam lift and wide authority cam phasing
 - Charge motion impacts on fuel/air mixing

Approach for ethanol-optimized particle study

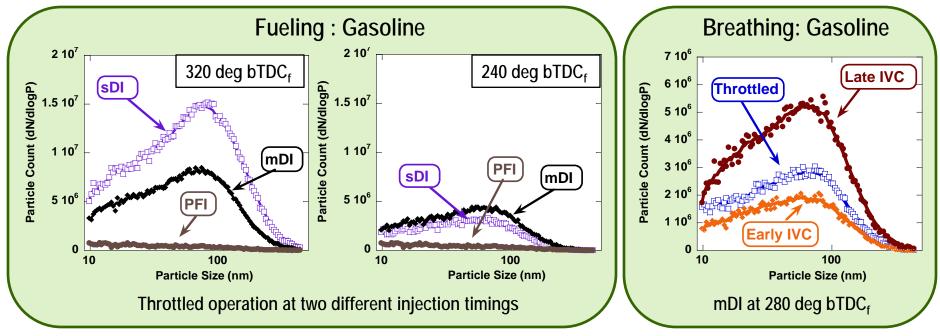
4-cylinder GDI engine, high CR (11.85) and flexible cam-based valvetrain

PFI fueling capability added


2-stage dilution with evaporator tube

SMPS for particle sizing (9 to 500nm)

- Single operating point, stoichiometric combustion
 - 1500 rpm, 8 bar BMEP
- 3 fueling and 3 breathing techniques
 - SOI Sweeps for single and multi-pulse GDI
- 3 fuels: Gasoline, E20 and E85



Fuel injection timing and fuel type significantly impact particle emission E85 produces fewer particles than gasoline

- Gasoline and E20 produce comparable levels of particles at this condition
 - > Particle emissions will continue to be problematic for low-level ethanol blends
- E85 results in significantly lower particle emissions across all operating strategies
 - Higher particle emissions under throttled and late intake valve closing conditions

Fueling and breathing strategies also affect particle emissions

- Port fuel injection produces the lowest particle count under all conditions
 - Likely due to homogeneity of fuel and air mixture
- Multi-pulse reduces particles at advanced SOI timing but increases at retarded timings
 - Reduced fuel impingement on piston, but reduced homogeneity of fuel and air
- Early IVC produces the lowest particle emissions while late IVC produces the highest
 - Differences related to charge motion, may or may not be engine specific

Collaborations

- Members of AEC/HCCI working group
 - ORNL delivers two presentations at each bi-annual meeting, receives valuable feedback from industry, National Labs, and academia
- Informal collaboration with the University of Michigan
 - UM is working on a combustion mode similar to SA-HCCI (their chosen acronym is SACI)
 - Collaborations have included data sharing and exchanges of ideas
- Formal collaboration with University of Michigan
 - Modeling of SA-HCCI
- Collaboration with the University of Wisconsin on dual-fuel combustion mode
 - Guidance on RCCI combustion mode, exchange of data and ideas
 - Graduate student from UW coming to do research at ORNL on multi-cylinder platform
- Concluded EtOH related CRADA with Delphi
 - Ongoing collaboration with Delphi with an advanced combustion CRADA (ACE053)
- Fuels-related funds-in project with OEM

Proposed Future Work

- Dual-fuel RCCI combustion
 - Continue collaboration with University of Wisconsin
 - Expand range of engine speed/load operating conditions
 - Operate RCCI combustion using E85 rather than petroleum-derived gasoline
- Stoichiometric spark-assisted HCCI
 - Extend range of fuels to include low and intermediate level ethanol blends as well as n-butanol and iso-butanol
 - Determine why E85 ignitibility is enhanced at low loads using in-cylinder sampling techniques
 - Translate efficiency benefits to real world fuel economy benefits through a combination of experiments and drive-cycle simulation
- Ethanol optimization and SI-engine particle characterization
 - CRADA project with Delphi has come to a natural and successful end
 - GDI particle characterization effort with fuels focus will continue at a level of effort to be determined
 - Currently seeking opportunities with industrial partners in this area

Summary

Relevance

 Studies aimed at increasing engine efficiency with low emissions by taking advantage of fuel properties with engine operating strategy and configuration.

Technical Accomplishments

- Joule milestone completed using E85 in the ORNL SA-HCCI combustion regime
 - Efficiency improvement of 5% was targeted with bio-fuel in advanced combustion regime
 - Achieved efficiency improvements more than triple the milestone target
- Advanced combustion load expansion: SA-HCCI combustion regime provides efficiency benefits from 2 to 9 bar IMEP while maintaining compatibility with NOx aftertreatment
- E85 nearly eliminates particle emissions during GDI fueling strategies, little difference exists between gasoline and E20
 - Particles also effected by fueling strategy, engine breathing, and fuel injection timing
- Future Work
- Continue to develop RCCI for higher efficiency operation, including with E85
- Investigate reason E85 exhibits enhanced ignitibility during SA-HCCI with in-cylinder sampling
- Translate SA-HCCI efficiency benefits to real-world fuel economy improvement with modeling

