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Presentation Outline
• Project Overview

• Study 1: Fuel effects of reactivity controlled compression ignition (RCCI) combustion
– Objectives and milestones
– Approach
– Technical accomplishments

• Study 2: Fuel effects of stoichiometric spark-assisted HCCI combustion
– Objectives and milestones
– Approach
– Technical accomplishments

• Study 3: Fuel and fueling effects of particle emissions from a gasoline direct-injection engine
– Objectives and milestones
– Approach
– Technical accomplishments

• Proposed future work

• Summary and conclusions
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Project Overview

Broad Barrier: Inadequate data and predictive tools to assess fuel property 
effects on advanced combustion, emissions, and engine optimization

 Our role: Determine the effects of fuel properties and chemistries on 
combustion performance and emissions for advanced combustion regimes.  
Work toward real-world efficiency, emissions, and petroleum displacement.

Budget
• FY10: $1,470 k
• FY11: $200 k

Project Timeline
• Current fuels research program started at ORNL in 2004
• Investigations have evolved, and will to continue to 

evolve, with emerging research needs

Industrial Partnerships and Collaboration
•Participation in Model Fuels Consortium, led by Reaction Design
•Members of the AEC/HCCI working group led by Sandia National Laboratory
•CRADA project with Delphi to increase efficiency of ethanol engines
•Related funds-in project with an OEM
•Collaboration with University of Wisconsin
•Collaboration with University of Michigan
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Study 1: Fuel effects of Reactivity Controlled 
Compression Ignition (RCCI) combustion

Objective: Demonstrate efficiency in light-duty engines 
over a large section of the engine operating map 
using advanced combustion techniques. 

Approach: Partner with the University of Wisconsin 
(UW) to apply the RCCI combustion concept to a 
multi-cylinder engine.

• UW has demonstrated 52% indicated thermal 
efficiency with RCCI in a light-duty single-cylinder 
engine

• ORNL’s role is to adapt the combustion concept to a 
multi-cylinder engine and overcome all of the 
practical implementation barriers

Modified intake manifold 
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RCCI Results at 2000 rpm 6 bar BMEP

Current Status:

• System is fully operational and producing results

• Results show comparable efficiency to diesel 
combustion with very low NOx and smoke 
emissions

• System optimization is ongoing
– Cylinder-to cylinder balancing
– Air management and EGR distribution

• Complete details in ACE016

Conventional 
Diesel

RCCI  
(81%gasoline)

BTE (%) 35.56 35.04

NOx (ppm) 216 19.9

HC (ppm) 136 3821

CO (ppm) 119 1673

FSN (-) 1.23 0.00

EGR Rate (%) 17.2 32.85

Boost (bar) 1.38 1.26 
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Study 2: Fuel effects of stoichiometric spark-
assisted HCCI combustion

Specific Barrier: Advanced combustion strategies are being developed for higher 
efficiency operation.  Simultaneously, fuel diversity is increasing due to EISA 
and other factors.  This work aims to identify fuel-related problems and 
opportunities as they pertain to advanced combustion strategies.

Objectives: 

1. Characterize stoichiometric SA-HCCI combustion with a baseline gasoline, 
including operable load range, emissions, combustion characteristics and 
thermal efficiency.

2. Complete Joule Milestone associated with SA-HCCI:

Characterize the potential for gasoline-like bio-fuels to enable efficiency 
improvements of at least 5% (compared to conventional spark-ignited 
operation with gasoline) within the FTP drive-cycle load range using the 
ORNL spark-assisted HCCI operating methodology .

Status: Milestone completed using E85 
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Stoichiometric SA-HCCI approach: Single cylinder 
research engine with Sturman hydraulic valve 
actuation (HVA)

• Modified 2.0L GM Ecotec engine with direct 
injection

• Cylinders 1-3 are disabled, cylinder 4 modified for 
Sturman HVA system

• Engine management performed with Drivven 
engine controller

• Custom pistons to increase compression ratio

9.20 CR 11.85 CR

Bore 86 mm
Stroke 86 mm
Connecting Rod 145.5 mm
Fueling Direct Injection
Compression Ratio 11.85
Valves per Cylinder 4

SI Combustion SA-HCCI
Fuel Rail Pressure (bar) 95 95
Fuel Injection Timing (CA)* -280 -340
Equivalence Ratio 1.0 1.0
Intake Valve Opening (CA)* -344  -313 to -234
Intake Valve Closing (CA)* -180  -180 to -124
Intake Valve Lift (mm) 9 3 to 6
Exhaust Valve Opening (CA)* 180 170
Exhaust Valve Closing (CA)* 349 234 to 313
Exhaust Valve Lift (mm) 9 2 to 3.5
*0 CA refers to combustion TDC
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High load limit increased to 7.5 bar from 1000 to 
3000 rpm with operating strategy

Attributes of the advanced combustion strategy
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SA-HCCI is a true mixed-mode combustion strategy

2500 rpm, 2 bar IMEP 2500 rpm, 6.5 bar IMEP
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Pressure rise rates are moderate at all engine loads (<7 bar/CA)
 Achieved through control of DI fuel injection timing, spark timing, 

and timing of valve events

Slow spark-
ignited 

portion of 
heat release

Combustion dominated by volumetric 
heat release at light loads 

An initial spark-ignited heat release is 
followed by volumetric heat at higher loads
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Stoichiometric SA-HCCI combustion improves fuel 
efficiency up to 9% compared to SI combustion

• Advantages over conventional SI
– Efficiency improvement of  3-9% over operable load range

• Advantages over lean-burn HCCI
– Larger operating load range
– Compatibility with conventional 3-way catalyst for NOx aftertreatment (stoichiometric A/F)

• Disadvantages over lean-burn HCCI
– Smaller efficiency improvement over conventional SI combustion
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Joule Milestone: 5% efficiency improvement with 
bio-fuel using ORNL SA-HCCI combustion strategy
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Joule Milestone: 5% efficiency improvement with 
bio-fuel using ORNL SA-HCCI combustion strategy
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Joule Milestone: 5% efficiency improvement with 
bio-fuel using ORNL SA-HCCI combustion strategy

• Substantial efficiency improvement over gasoline under SA-HCCI conditions

• E85 exhibits additional unique behavior
 E85 differences are subject of ongoing analysis
 Efficiency increase possibly explained by molar expansion ratio effect (see ACE015)

Joule milestone accomplished using E85 with efficiency improvements more
than triple the target.
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E85 spark timing 
sweep

Gasoline spark
timing sweep

E85 autoignites more readily than gasoline under 
constant operating conditions at light engine loads

• Combustion phasing for E85 is more advanced than for gasoline under the same 
valve events and start of injection timing at light load conditions 

– E85 has a much higher octane number than gasoline

• Enhanced ignitibility observations could be due to two different phenomena and is 
the subject of planned future research
 Engine operating in high T, low P ignition regime (i.e.“beyond MON”) regime where neither RON nor 

MON adequately represent the propensity for autoignition

 Fuel injected into NVO undergoes reforming, altering ignition chemistry

E85 net IMEP: 2.8 bar
Gasoline net IMEP: 2.6 bar

Intake Valve Exhaust Valve

Fuel Injection

Cylinder Pressure
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E85 and gasoline behave similarly at higher 
engine loads

• E85 and gasoline exhibit similar combustion stability, pressure rise, and 
combustion phasing

• Fuel SOI timing is later at higher load condition
– Fuel injected into lower temperature and pressure section of negative valve 

overlap
– Lower probability of reactions occurring during NVO

E85 net IMEP: 4.8 bar
Gasoline net IMEP: 4.2 bar

Intake Valve Exhaust Valve

Fuel Injection

Cylinder Pressure
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Study 3: Enabling high efficiency ethanol engines
CRADA project with Delphi Automotive systems

• Specific Barrier: EISA legislation requires increased use of renewable fuels, but reduced 
fuel economy is a market barrier for E85

 Objective 1 accomplished in in FY10: Demonstrated a reduction in the fuel economy gap 
between E85 and gasoline by taking advantage of unique E85 fuel properties.

Accomplishment: Reduced fuel economy gap by 20% (SAE 2010-01-0619) while 
maintaining gasoline compatibility and OEM efficiency

• Objective 2: Characterize particle emissions on an engine intended for high efficiency 
operation with ethanol fuels  (study leveraged with health impacts – ACE045)
 Objective 2 accomplished during FY11

 Direct fuel injection 
 Fuel/air mixing
 Fuel impingement on piston

 High compression ratio
 Impingement due to smaller clearances

 Flexible cam-based valvetrains with 2-
step cam lift and wide authority cam 
phasing
 Charge motion impacts on fuel/air 

mixing

Motivation for Objective 2: Particle number emission regulations under consideration for SI 
engines, and engines optimized for E85 have several unconventional features
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Approach for ethanol-optimized particle study

• Single operating point, stoichiometric 
combustion
– 1500 rpm, 8 bar BMEP

• 3 fueling and 3 breathing techniques
– SOI Sweeps for single and multi-pulse GDI

• 3 fuels: Gasoline, E20 and E85

SMPS for particle sizing (9 to 500nm)2-stage dilution with 
evaporator tube

4-cylinder GDI engine, high CR (11.85)  
and flexible cam-based valvetrain
• PFI fueling capability added
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Fuel injection timing and fuel type significantly 
impact particle emission
E85 produces fewer particles than gasoline

• Gasoline and E20 produce comparable levels of particles at this condition
 Particle emissions will continue to be problematic for low-level ethanol blends

• E85 results in significantly lower particle emissions across all operating strategies
– Higher particle emissions under throttled and late intake valve closing conditions

Early fuel injection timing
(320 deg bTDCf)

• Highest particle emissions
• Likely fuel spray impingement 

on piston

Near-optimal injection timing
(280 deg bTDCf)

• Lowest particle emissions
• Good fuel-air mixing

Late fuel injection timing
(240 deg bTDCf)

• Rising particle emissions
• Insufficient time and charge 

motion for fuel-air mixing
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Fueling and breathing strategies also affect 
particle emissions

• Port fuel injection produces the lowest particle count under all conditions
– Likely due to homogeneity of fuel and air mixture

• Multi-pulse reduces particles at advanced SOI timing but increases at retarded timings
– Reduced fuel impingement on piston, but reduced homogeneity of fuel and air

• Early IVC produces the lowest particle emissions while late IVC produces the highest
– Differences related to charge motion, may or may not be engine specific

mDI at 280 deg bTDCf

Fueling : Gasoline

Throttled operation at two different injection timings

Breathing: Gasoline
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Collaborations
• Members of AEC/HCCI working group

– ORNL delivers two presentations at each bi-annual meeting, receives valuable feedback from industry, 
National Labs, and academia

• Informal collaboration with the University of Michigan
– UM is working on a combustion mode similar to SA-HCCI (their chosen acronym is SACI)
– Collaborations have included data sharing and exchanges of ideas

• Formal collaboration with University of Michigan
– Modeling of SA-HCCI

• Collaboration with the University of Wisconsin on dual-fuel combustion mode
– Guidance on RCCI combustion mode, exchange of data and ideas
– Graduate student from UW coming to do research at ORNL on multi-cylinder platform 

• Concluded EtOH related CRADA with Delphi
– Ongoing collaboration with Delphi with an advanced combustion CRADA (ACE053)

• Fuels-related funds-in project with OEM
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Proposed Future Work
• Dual-fuel RCCI combustion

– Continue collaboration with University of Wisconsin
– Expand range of engine speed/load operating conditions
– Operate RCCI combustion using E85 rather than petroleum-derived gasoline

• Stoichiometric spark-assisted HCCI
– Extend range of fuels to include low and intermediate level ethanol blends as well 

as n-butanol and iso-butanol
– Determine why E85 ignitibility is enhanced at low loads using in-cylinder sampling 

techniques
– Translate efficiency benefits to real world fuel economy benefits through a 

combination of experiments and drive-cycle simulation

• Ethanol optimization and SI-engine particle characterization
– CRADA project with Delphi has come to a natural and successful end
– GDI particle characterization effort with fuels focus will continue at a level of effort 

to be determined
– Currently seeking opportunities with industrial partners in this area
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Summary
Relevance

• Studies aimed at increasing engine efficiency with low emissions by taking advantage of fuel 
properties with engine operating strategy and configuration.

Technical Accomplishments

• Joule milestone completed using E85 in the ORNL SA-HCCI combustion regime 
– Efficiency improvement of 5% was targeted with bio-fuel in advanced combustion regime
– Achieved efficiency improvements more than triple the milestone target 

• Advanced combustion load expansion: SA-HCCI combustion regime provides efficiency 
benefits from 2 to 9 bar IMEP while maintaining compatibility with NOx aftertreatment

• E85 nearly eliminates particle emissions during GDI fueling strategies, little difference exists 
between gasoline and E20
– Particles also effected by fueling strategy, engine breathing, and fuel injection timing

Future Work
• Continue to develop RCCI for higher efficiency operation, including with E85
• Investigate reason E85 exhibits enhanced ignitibility during SA-HCCI with in-cylinder sampling
• Translate SA-HCCI efficiency benefits to real-world fuel economy improvement with modeling


	Gasoline-like fuel effects on advanced combustion regimes�Project ID# FT008
	Presentation Outline
	Project Overview
	Study 1: Fuel effects of Reactivity Controlled Compression Ignition (RCCI) combustion
	RCCI Results at 2000 rpm 6 bar BMEP
	Study 2: Fuel effects of stoichiometric spark-assisted HCCI combustion
	Stoichiometric SA-HCCI approach: Single cylinder research engine with Sturman hydraulic valve actuation (HVA)
	High load limit increased to 7.5 bar from 1000 to 3000 rpm with operating strategy
	SA-HCCI is a true mixed-mode combustion strategy
	Stoichiometric SA-HCCI combustion improves fuel efficiency up to 9% compared to SI combustion
	Joule Milestone: 5% efficiency improvement with bio-fuel using ORNL SA-HCCI combustion strategy
	Joule Milestone: 5% efficiency improvement with bio-fuel using ORNL SA-HCCI combustion strategy�
	Joule Milestone: 5% efficiency improvement with bio-fuel using ORNL SA-HCCI combustion strategy
	E85 autoignites more readily than gasoline under constant operating conditions at light engine loads
	E85 and gasoline behave similarly at higher engine loads
	Study 3: Enabling high efficiency ethanol engines�CRADA project with Delphi Automotive systems
	Approach for ethanol-optimized particle study
	Fuel injection timing and fuel type significantly impact particle emission�E85 produces fewer particles than gasoline
	Fueling and breathing strategies also affect particle emissions
	Collaborations
	Proposed Future Work
	Summary

