

Fuel Spray Research on Light-Duty Injection Systems

Project ID ACE10

Christopher Powell Alan Kastengren, Jin Wang

2010 OVT Merit Review 8 June 2010 Washington, DC

Team Leader: Gurpreet Singh

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Project Start: FY2000

Budget

- Lifetime Project Funding
 - \$4M Since FY05
- Recent Funding
 - FY2009: \$645K
 - FY2010: \$835K

Partners

Bosch, ERCSandia, Delphi

Barriers

- "Inadequate understanding of the fundamentals of fuel injection"
- "Inadequate capability to simulate this process"
- "Inadequate understanding of fuel injector parameters (timing, spray type, orifice geometry, injection pressure, single-pulse vs. multi-pulse)"

These barriers impact:

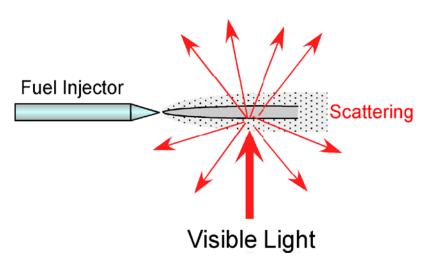
- Low-Temperature Combustion
- Thermal Efficiency
- System Cost

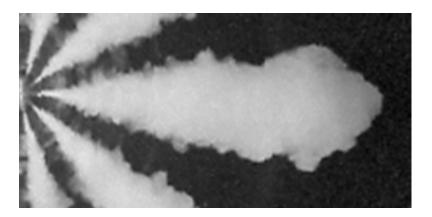
Objectives

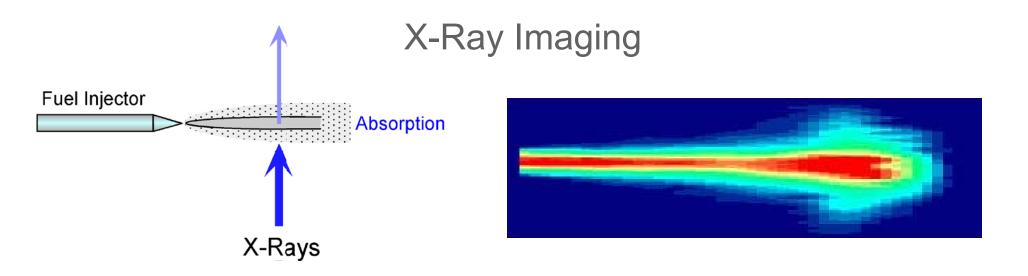
Overall Goals:

- Serve industry by providing unique injector and spray diagnostics
- ⇒Assist in development of improved spray models using unique quantitative measurements of sprays

FY2010:

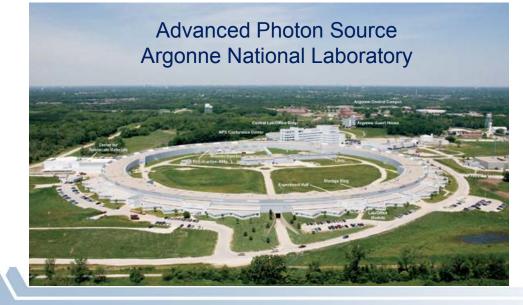

⇒ Complete Vehicle Technologies X-Ray Beamline
⇒ Investigations of end of injection using Sandia nozzles
⇒ Test Musculus' entrainment wave hypothesis
⇒ Poorly atomized fuel at end of injection
⇒ Fabricate new components for tests of GM 1.9, Delphi Diesel, and Engine Combustion Network.
⇒ Begin new collaboration with Delphi Diesel
⇒ Analysis and publication of data from ERC collaboration


Milestones, FY2009 and FY2010


- Sep 2009: Measurements of End of Injection Effects
- June 2010: Complete fabrication of GM 1.9 fuel system
- July 2010: Measurements of GM 1.9 sprays
- Sep 2010: Measurements in support of Engine Combustion Network
- Sep 2010: Vehicle Technologies X-Ray Beamline opens to General User Proposals

Technical Approach - X-rays Reveal Fundamental Spray Structure

Visible Light Imaging



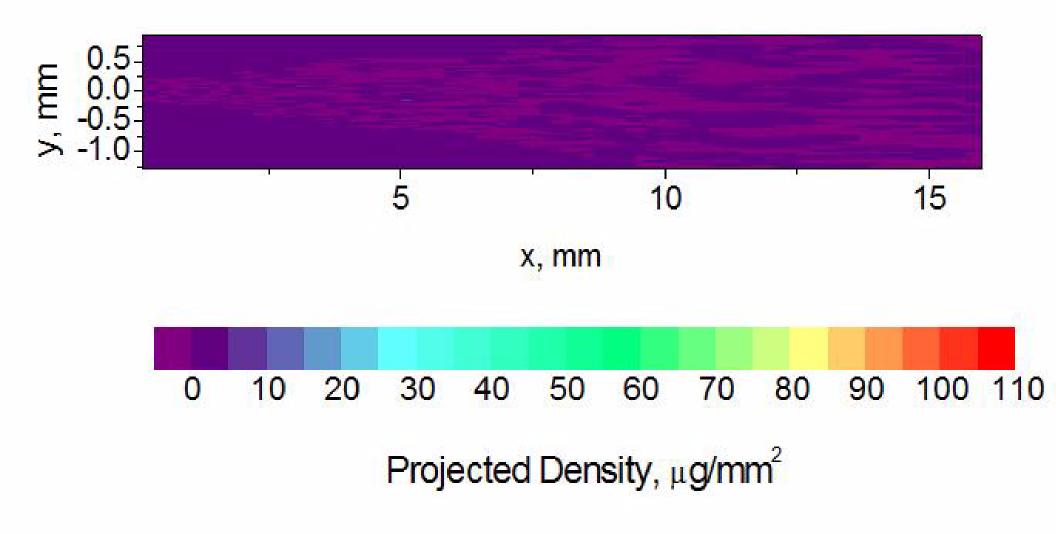
Vehicle Technologies X-Ray Beamline

- Previous experiments were done under a competitive proposal system
- Allowed 6 weeks of experiments per year
- New experimental station is dedicated to vehicle technologies, primarily fuel sprays
- 50% of the construction costs paid by BES.
- 100% of operations, maintenance, two postdocs and one staff paid by BES

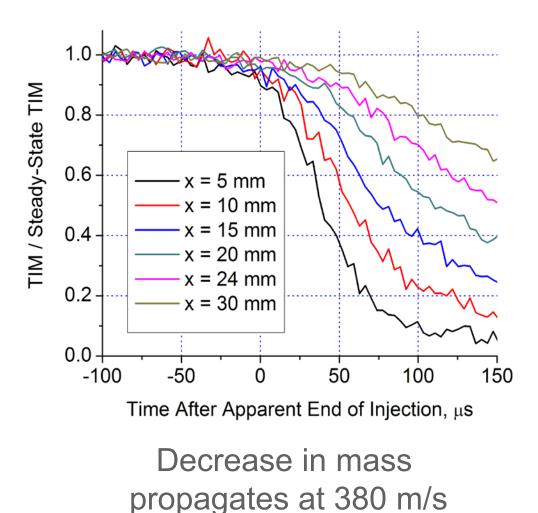
- \Rightarrow Dedicated space
- ⇒Guaranteed access to x-ray beam at no cost to project
- ⇒More time available for measurements
- \Rightarrow Expansion of collaborations

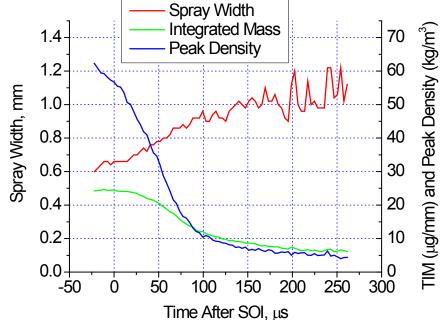
New Beamline Offers Significant Improvements

- Better instrumentation
 - Better control of photon wavelength and flux
 - Equipment is tailored to our needs, rather than general-purpose
- Better beam optics give better spatial resolution
 - Previously, 150 μ m horizontal x 14 μ m vertical
 - New beamline: 10 μ m horizontal x 8 μ m vertical
 - No decrease in flux
 - Better resolution of spray structure, particularly for small nozzles
- Guaranteed access
 - Can leave equipment largely in place
 - More time to perform experiments, expansion of collaborations
 - Time to work on development: new x-ray diagnostics, new applications
- Upcoming improvements
 - New focusing mirror will increase flux by order of magnitude (June 2010)
 - New detector system and DAQ will speed measurements (July 2010)
 - Beamline open to General User Proposals (September 2010)


Investigations of End of Injection Phenomena

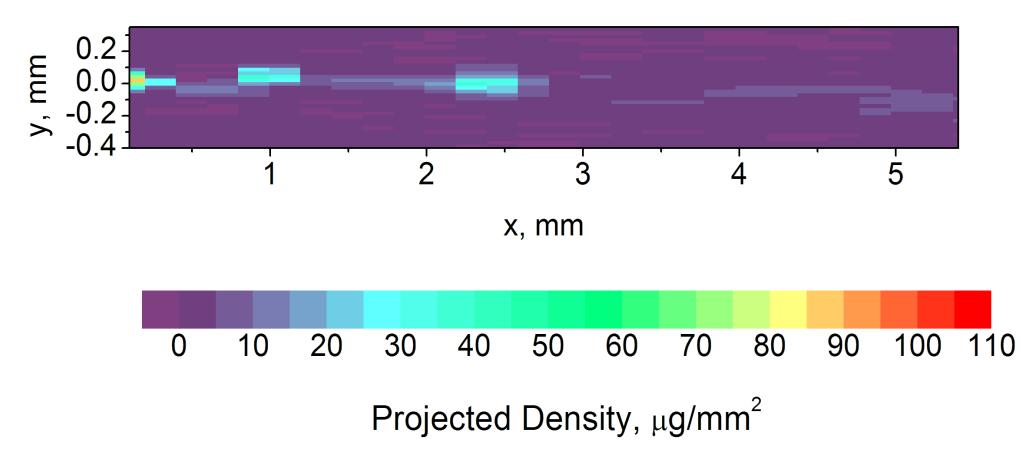
- Recent papers by Musculus *et al.* suggest very rapid mixing at end of injection
 - "Entrainment Wave" travels downstream very quickly after EOI
 - Can lead to overly lean mixtures and UHC's
 - Might be used to advantage
- X-ray radiography can observe the end of injection without interference from fog of droplets
 - Measure changes in density at EOI
 - Measure propagation speed


"Entrainment waves in decelerating transient turbulent jets", M. P. B. Musculus, Journal of Fluid Mechanics 638, pp. 117-140, 2009.


Advanced Engine Combustion Working Group Meeting, February 2010

Spray Distribution, 110 µm Diameter Nozzle 700 bar Rail Pressure, 1200 µs Duration

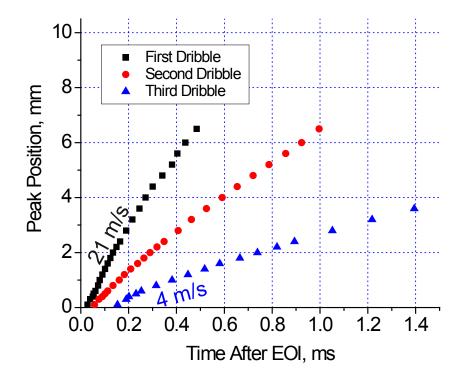
X-Ray Measurements of the End of Injection



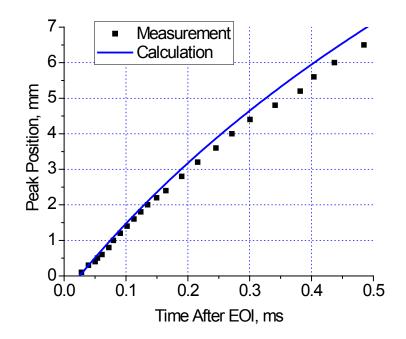
 Spray width increases significantly near EOI

 This combines with decrease in mass to cause very rapid drop in density

End-of-Injection Behavior of Diesel Sprays Measured with X-Ray Radiography, Kastengren *et al*, ASME-ICEF2010-35052


"Dribble" of Fuel at End of Injection

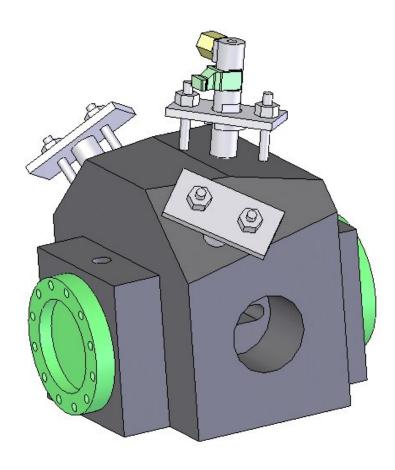
- Improvements to spatial resolution make measurement possible
- Incredibly reproducible


Advanced Engine Combustion Working Group Meeting, February 2010

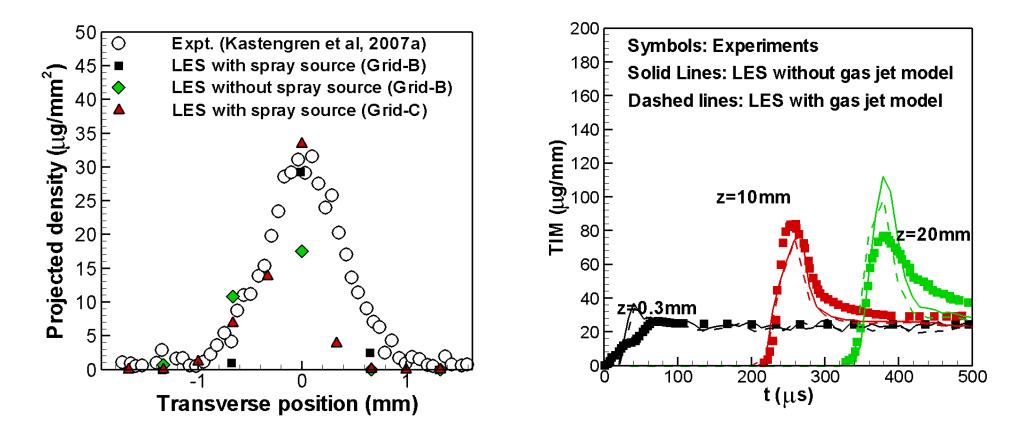
Tracking Fuel Parcels After End of Injection

- These parcels are important!
 - Likely to contribute to soot or UHC's
 - UHC's are a target for tighter regulation
- Source of these parcels:
 - Emptying of sac?
 - Needle bounce?

- Parcels can be tracked to measure their speed
- Density can be used to calculate their size: All are approximately equal to nozzle diameter
- Rate of deceleration will depend on motion of ambient gas
 - Consistent with stagnant environment


Fabrication of Components for Future Tests: GM 1.9 and Engine Combustion Network

- GM 1.9
 - July 2010: study sprays using hardware, fuel, and conditions matching Ciatti's lowtemperature combustion strategies in GM 1.9
 - New injector driver is being tested, all hardware is in-house
 - Will allow us to combine x-ray measurements with in-cylinder imaging, engine performance and emissions data
- Engine Combustion Network
 - Collaboration led by Sandia involving ten spray laboratories worldwide
 - Identical hardware and conditions studied
 - Argonne will contribute full suite of x-ray diagnostics
 - Results freely shared with modeling groups


New Collaboration: Delphi Diesel

- Delphi wishes to understand the effect that nozzle geometry has on spray structure
 - Improve injector and nozzle designs
 - Improve computational spray models
- Delphi will fabricate custom spray nozzles with various geometries
- Argonne will use its full suite of injector and spray diagnostics:
 - High speed X-ray imaging of the injector components
 - X-ray radiography to measure fuel distribution
 - Ultra fast spray imaging for studying spray structure
- Status:
 - Hardware to be tested has been chosen, is being gathered
 - Spray chamber is being designed (multi-hole, multiangle, multi-view)
 - Contract (CRADA) is being negotiated

X-Ray Data Used for Development of KIVA LES

- Nidheesh Bharadwaj spent six weeks at Argonne in May 2009
- Collaboration between Sandia, Wisconsin, and Argonne
- X-ray measurements used for development and validation of LES turbulence models incorporated into KIVA

"Droplet-ambient sub-grid interaction modeling in large eddy simulation of diesel sprays", Bharadwaj and Rutland, ILASS 2010

Collaboration and Coordination with Other Institutions

- University of Wisconsin Engine Research Center
 - Joint measurements, used x-ray data for modeling, publication
- Sandia National Laboratory
 - Measurements of their nozzles, comparison with combustion chamber data
 - Upcoming work with Engine Combustion Network
- Delphi Diesel
 - New collaboration this year, currently negotiating CRADA
- Chrysler
 - New collaboration later this year
 - Funded by ARRA
 - Statement of Work is complete, Chrysler currently negotiating with DOE

Future Work in FY2010 and FY2011

- Strengthen ties between spray experiments and engine experiments
 - Measurements supporting Argonne's work on GM 1.9
 - Match hardware, fuel, engine conditions
 - Comprehensive view of sprays, combustion, engine performance
- Experiments supporting Sandia's Engine Combustion Network
 - Argonne will provide x-ray measurements of spray and needle motion
 - Data will be provided to all partners, including spray modelers
- Projects with industrial partners
 - Delphi Diesel
 - Chrysler
- Studies of fuel additive effects
 - To date, cerium additive was required for measurements
 - With increased x-ray flux, can we reduce or eliminate additive?
- New multi-pixel detector system
 - Collaboration between Argonne and Fermilab detector groups
 - Currently being designed to our specifications
 - 100% of cost paid by BES
 - Will speed measurements, improve spatial resolution

Summary

- X-Ray diagnostics are being used to address a range of research challenges
 - Studying sprays under engine-relevant conditions
 - Providing data for srpay model development and validation
 - Understanding the fundamentals of atomization
 - Provide a diagnostic for industrial partners
- New experiment station dedicated to our research will make these measurements easier and available to a wider group of collaborators