

Ford Plug-In Project:

Bringing PHEVs to Market

Lee Slezak: DOE Technology Development Manager John Jason Conley: NETL Project Manager

> Ryan McGee Technical Expert, Vehicle Controls Research & Advanced Engineering Ford Motor Company May 16, 2013 Project ID VSS019

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Presenter:

-CE Overview

Timeline • Start: October, 2008	Partners Electric Power Research Institute (EPRI)	
 Finish: December, 2013 90% Complete Fleet Build and Testing: 100% Advanced Information Systems demonstration: 25% 	 Southern California Edison Detroit Edison NY Power Authority Consolidated Energy NY State Energy Research & Development 	
• Total Project Funding – DOE: \$7,547,748 – Ford: \$7,575,540	Authority Progress Energy Southern Company National Grid American Electric Power Pepco Holdings Inc. Hydro-Quebec 	
DOE funds have been fully obligated.	Nokia	
 Battery Cost Battery Charge Time 	Extreme Temperature OperationLack of Uniform Codes & Standards	

Objectives:

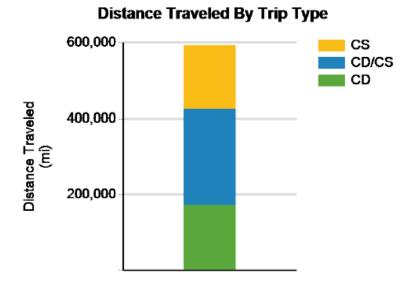
Identify a sustainable pathway toward accelerated and successful mass production of Plug-in Hybrids (PHEVs)

Relevance

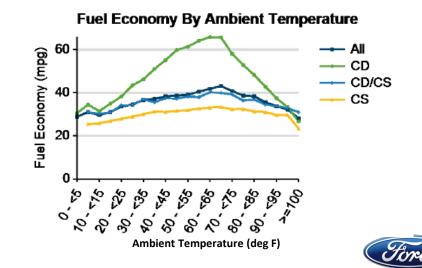
- Launch a 21 vehicle demonstration fleet
 - Provide real-world usage data
 - Provide laboratory data
- Support a customer-valued PHEV production program
 - Propulsion and Control System Design
 - Two-way Charger Communication
- Leverage Connectivity to Improve Vehicle Operation
 - New data sources, new opportunities
 - Intelligent, adaptive, and personalized

C = Approach

Phase	Activity	Status
Ι	Validate and demonstrate plug-in technology on a new, more fuel efficient engine	Completed in 2009 CY – Included engineering and development of 11 vehicles
II	Progress battery/controls closer to production intent and demonstrate bi-directional communication and flex-fuel capability	Completed in 2010 CY – Included engineering, development and delivery of additional 10 PHEV's with E85 flexibility
III	Demonstrate plug-in technology in fleet operation and perform data analysis	Completed 1QTR 2011 – Included completion Ford/INL fleet data correlation and algorithm validation
IV (Demo. Fleet)	Continue vehicle demonstrations from Phase III and demonstrate advanced metering interface:	Completed in 2012 – All demonstration vehicles returned.
V (Adv Info Sys)	Demonstrate the benefit of using advanced information systems in an intelligent PHEV system	Initiated 2012 – Developing concepts using simulation and prototype hardware.


2012 Demonstration Fleet Completed Milestones

Complete demonstration of PHEV Fleet	 21 Unit Escape Plug-In Hybrid Demonstration Fleet completed with total accumulation of over 800,000 miles with data acquisition systems in place and collecting real-world PHEV(includes Ford development miles) Over 300 nationwide public outreach activities supported (auto shows, educational displays and government events) over life of fleet
Complete vehicle development and testing	 Ford Escape PHEV Fleet demonstration completed December 2012 EPRI has completed their analysis of the on-road data - providing insight into vehicle and driver behavior, the feasibility of bi-directional communication (vehicle <->:charging infrastructure), as well as the potential for vehicle impact on the grid through the creation of a fleet charging aggregator simulation tool.
Complete in-field vehicles service and support	 Updates to the on-board vehicle chargers gave the fleet access to Level II 240V EVSE through the installation of SAE J1772 compatible charge ports Level I 120V charging still possible per project requirements Fleet upgrades were completed in 1st Qtr 2012
Complete data acquisition, analysis and reporting	 All data collected during fleet demonstration has been made available to Idaho National Laboratories with summary reports available to the public on the AVTA website. <u>http://avt.inl.gov/phev.shtml</u> Reports include monthly summary results as well as consolidated summaries for Jan. – Nov. 2012 and Nov. 2009 – Dec.2012



Form Nov. 2009 through Dec. 2012, the Ford Escape PHEV demonstration fleet ...

- 593,114 of the miles traveled were analyzed by INL with results made public on the INL AVTA website
- Of the 49,849 trip events 29% are reported in Charge Depleting, 28% in Charge Sustaining (typical hybrid operation), and 43% in both modes
- Of the 19,514 charge events Vehicles were found to be charged an average of 2.2 hours, resulting in only a partial SOC increase. (*This fleet experienced a pattern of short, infrequent charges, which limited the ability to realize the potential benefits of the PHEV system*)

• Fuel Economy in Charge Depleting mode was the most sensitive to ambient temperature

NOTE:

- *Majority of demonstration prototype* vehicles were not equipped with electronic A/C
- Purpose of fleet was to demonstrate vehicle/grid interaction and customer duty cycles; vehicles were not optimized to provide maximum potential fuel economy

2012, 2013Q1 Advanced Information System Completed Milestones

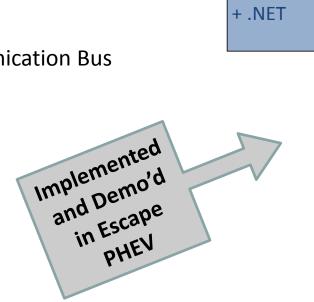
Prototype Hardware Acquired and Deployed for Development	 Escape PHEV prototype repurposed for Smart and Connected technology development Updated with PC, 4G modem, Touch Screen, Precision GPS Tablet to Vehicle integration through OpenXC system
Defined Vehicle to Cloud Connectivity Architecture and Software	 Defined overall vehicle to cloud system architecture Implemented Windows 7 + .net framework Designed and implemented shared services (Location, Route, Zones, Controller Area Network, and more) Demonstrated in an Escape PHEV
Ongoing Algorithm Development	 Path Forecasting for Optimal Energy Management (Use preview of route and topography to improve fuel economy) Trip Profiling Cloud Based Battery Calculations (Off boarding of large scale computation) Location based (Geo fenced) energy management

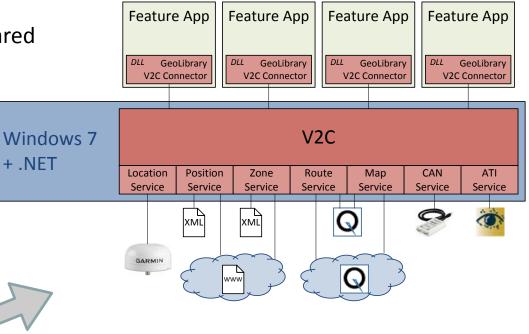
Technical Accomplishments 4 of

Prototype Hardware Development

Escape PHEV from demonstration fleet as baseline vehicle

- CarPC installed in the trunk
- Touch-Screen for driver
- 4G Connectivity
- Prototype Control Module for Powertrain Controls Development

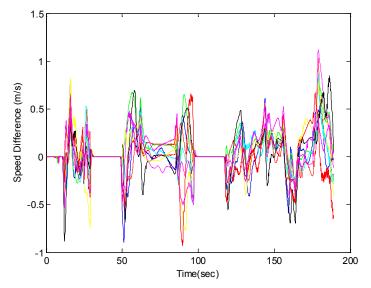

- Open XC hardware provides link between tablet and vehicle
- Tablet provide development platform for HMI experiences



3 Layered Expandable Structure

- Feature Apps
- Vehicle to Cloud Framework with Shared Services
- External Systems
 - Map Data
 - GPS
 - Route
 - Communication Bus
 - ...

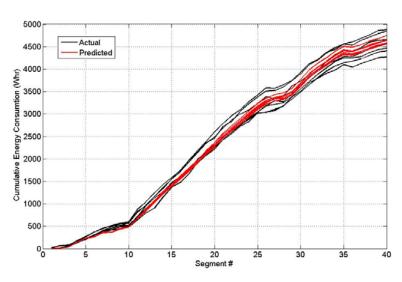
Technical Accomplishments 5 of



Technical Accomplishments 6 of

Path Forecasting Controls

Use preview information to improve Fuel Economy


- Route based algorithm, uses receding horizon control concept
- Expanded algorithm to consider alternative drive cycles
- Robustness study initiated to consider deviations from target speed profile

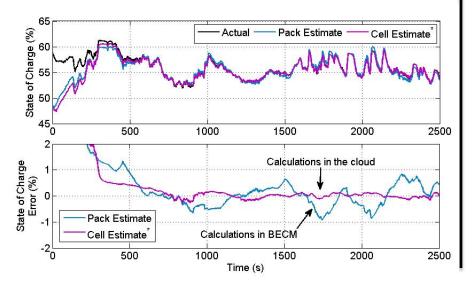
Trip Profiling

Developed New Trip Profiling Algorithms

- Energy Usage Models
- Destination Prediction
- Common Route Recognition
- Online GPS segmentation

Home

Schoo


Office

Cloud Based Battery Calcuations

Use off-board computing capability to improve accuracy of battery system models

- Cell level modeling vs. Pack level modeling shows improvement in SOC accuracy
- Studied effect of low bandwidth connectivity and loss of data

Location Based Energy Mgmt

All Electric Driving is important for PHEVs

- Customers want control of where and when they prioritize EV driving.
- Automatic location based energy usage concept using customer defined geo-fenced areas has been designed and implemented in the Escape PHEV Prototype.

Collaborations

With our Partners

- The demonstration Ford Escape PHEVs supported over events:
 - Auto shows, local green festivals, Presidential drives, utility conference meetings and public awareness events
 - Static Display and/or Drive events
- 2012 Bi-weekly Customer Action Team Meeting held
- Vehicle Data Analysis and Reporting
 - Summary reports were available in near real time for use by Ford and utility partners
 - INL published monthly fleet status summary reports on AVTA website
 - Ford and INL co-authored EVS-26 report presented May, 2012
- The Electric Power Research Institute (EPRI) concluded three affiliated collaboration projects:
 - analysis of infield results of the Escape PHEVs,
 - field demonstration of Smart Meter communication, and
 - creation of a model studying plug-in vehicles as a grid resource
- Partnered with Nokia to integrate map based data into on-board control system
 - Using route based data for trip profiling
 - Historic traffic information used for vehicle speed prediction
 - Integrated Advanced Driver Assistance Systems Rapid Prototyping software into Escape PHEV

Future Work

Planned work for Phase V

- DOE to evaluate the translation of demonstration fleet into production solutions:
 - Two production Ford C-MAX Energi PHEVs have been built for the Department of Energy evaluation
 - Data to be collected and made available to Idaho National Laboratories
- Continue to demonstrate the benefit of using advanced information systems in an intelligent PHEV system (E.g. enhanced fuel economy, drivability)
- Migrate Escape PHEV Prototype development platform to production Ford PHEVs: 2013 Ford Fusion Energi, 2013 Ford C-MAX Energi

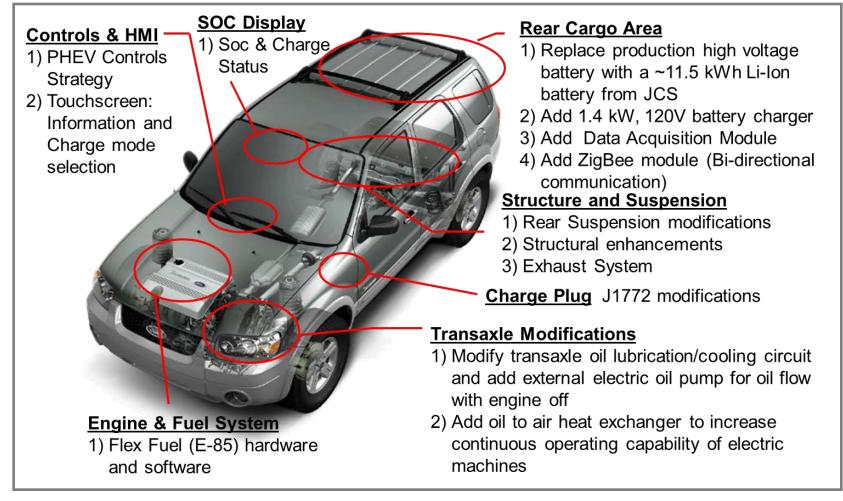
Target Completion

Year End 2013

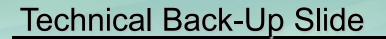
- This DOE sponsored program has:
 - Supported the announcement of two mass production PHEV programs in North America and Europe
 - Enabled a nationwide outreach effort including educational, community and industry/utility events
 - Facilitated a deeper understanding of the current and future potential impact of PHEVs on the grid
- The conclusion of the on-road Escape PHEV demonstration fleet includes:
 - 3+ years of on-road PHEV data collection covering more than 800,000 miles (including pre-deployment mileage accumulated during Ford vehicle development work)
 - With public summary reports made available through Idaho National Laboratories on over 590K miles, 49K trips and 19K charge events
- Demonstrated that using advanced information systems with PHEVs offers the possibility to improve vehicle attributes such as drivability and fuel economy.
- Collaboration with project sponsors and partners has both progressed the project and resulted in co-authored public presentation of results

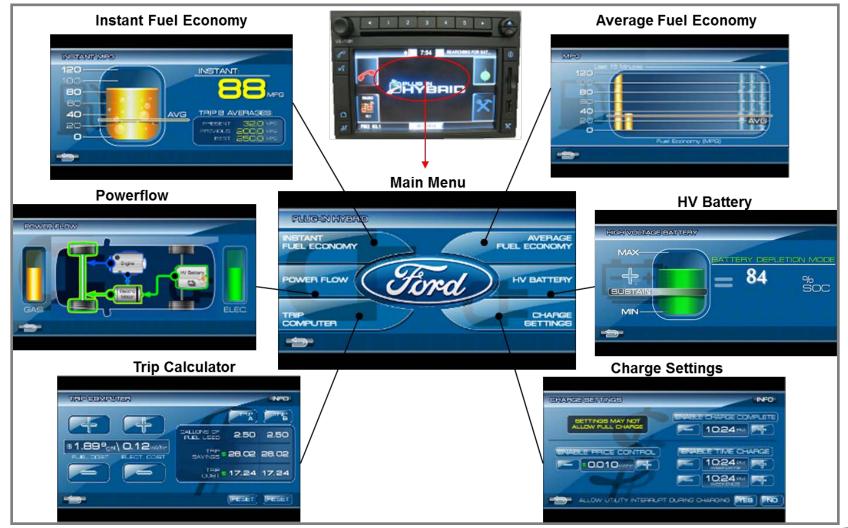

Additional Slides

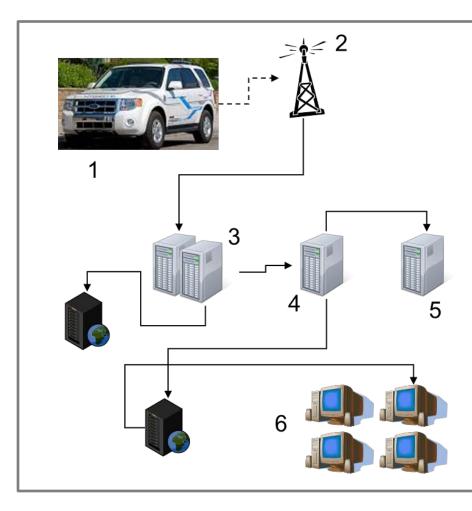
Technical	Back-Up	Slides


- PHEV Features and Specifications
- Human Machine Interface (NAV system)
- Vehicle Data Collection and Reporting

<u>Slide Number</u>
16
17
18




PHEV Features and Specifications ...


Human Machine Interface (NAV system) ...

Technical Back-Up Slide

Vehicle Data Collection and Reporting ...

- 1. Data collected on vehicle.
- 2. Data received by broadband wireless network
- 3. Data archived in collection server
- 4. Data relayed to website server
- 5. Website server backed-up nightly
- 6. Data available to authorized users through web

