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Overview

Budget Barriers
« Funding for FY08: $270,001 « Low rate capabilities
e High cost
e Poor stability

Objectives
Partners
» Determine the effect of structure on
stability and rate capability of * Clare Grey (SUNY) (co-PlI)
cathodes and anodes.
« Explore relationship between * Collaborators (BATT):
electrochemistry and particle size « Dr. K. Persson, LBNL
and shape.  Dr. R. Kostecki, LBNL

« Understand and predict reactivity of * Drs. Smith/Borodin, Utah
anode and cathode electrode
materials with electrolytes.

* Develop new materials

 Prof. J.-M. Tarascon
 Prof. D. Aurbach
 Prof. Bazant



e (a) November 1, 2008: Demonstrate the application of the in situ NMR technology to investigate
nanoparticle deintercalation/intercalation methods. COMPLETE

e Complete studies of structural changes that occur at high voltages in nickel and manganese
containing layered materials. COMPLETE

e (b) May 1 2009: Computational results on lithiation of nanomaterials; Produce initial results
on broad search for new materials. In progress™

 Complete NMR/electrochemical studies of coatings on lithium nickel manganese oxides materials. In
progress*®

e Complete NMR and pair distribution function (PDF) studies study of silicon, during the Ist cycle;
initiate structural and reactivity studies on the effect of cycling Si to different states of (dis)charge.
COMPLETE

e Complete investigation of mechanisms for phase transformations in LiMPO, as a function of
shape for M = Fe. Initiate studies for (M = Mn, Ni, Co and solid solutions of Fe and these
elements). In progress™

Approach

« Use first principles calculations (density functional theory) to identify redox-
active metals, relative stability of different structures, the effect of structure and
particle size on cell voltages and rate capability, and to identify promising cathode
materials for BATT applications.

« Anticipate possible instabilities in materials at high states of charge by using
calculations. Use calculations and NMR to identify low activation energy pathivays
for cation migration and to investigate electronic conductivity. .

*As of March 20, 2009



Technical Focus and Accomplishments

URATE: Computed quaternary phase diagrams of Li-M-P-O systems with
= Fe, Mn, Ni and used to develop LiFePO, with extreme rate capability.
LQAB-INITIO METHODS FOR MORPHOLOGY CONTROL: Developed first

principles approach to predict particle morphology as function of
environment (in solution and in oxygen) (with K. Persson, BATT, LBNL)

LOPHASE TRANSFORMATIONS IN OLIVINES: Developed formalism to
study mixed metal olivines and applied to Li(Fe,Mn)PO,.

UNANO EFFECTS: Investigated surfaces of LiFePO, and LiMnPO,:
structure, potentials, stability and developed theory on the size-
dependence of the miscibility gap

LJCONVERSION REACTIONS Studied conversion reactions and nano-
size effects in Fe-fluorides, Bi-F, Cu-F and Ag-F. Developed a
hypothesis/model to explain hysteresis in Fe-F.

ONEW MATERIALS: Developed high-throughput computational
screening ability to find new electrode materials.



Thermodynamics, morphology, and size dependence of

properties of LiFePO, and LiMnPO,

Li migration barrier calculation indicate
that very high rate is possible

271N 1D diffuser:

. ; barrier of 200-300meV
diffusion length:
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Phase diagram calculations
indicate how to achieve it
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Nano material with optimized surface treatment gives very

high Power density
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Ab initio processing ? (under development)

Can we use first principles computations to guide
processing to make a particular structure or morphology?
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Morphology of olivine system can be depends on pH, T, precursor concentration, ...

[1] T. Richardson, et. al. private communication

Investigate surface energetics in solution. Need to develop
open-system first principles methods to allow for
adsorption of species from solution.



Study all relevant surfaces in solution

with typical adsorbants + potential Li dissolution
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Study all relevant surfaces

with typical adsorbants + potential Li dissolution

LiFePO,

At neutral potential all the surfaces At high potential all the surfaces are
are water capped for any pH water capped for any pH

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
(010) H,0 (010) H,0 OH-{-
(201) H O

2 (201) H,0 o)
001
(007) 1.0 (001)|H.0 OH o
(100) H,0
,,,,,,,,,,,,, (100)| H,O OH
0 2 4 6 8 10 12 14 P T P S
pH E=0V 0 24 6 8 10 12 14

pH E=10V

Surface adsorption/structure, and hence surface energy, can be modified by
pH! -> gives control over stable morphology of the surfaces



Stable Wulff shapes as function of environment
Shape control through pH !

More Oxidizing
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Similar ab-initio shape control in LiCoO,
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Voltage (V)

Mixed Olivine Systems: Li(Fe,Mn)PO,

*Developed a simulation model to study mixed olivines with ab initio
‘Developed theory for change in potential of plateau voltages
*Currently addressing diffusion, polarization and phase
transformation kinetics in mixed olivines

Mn2+/Mn3+ voltage
_.++*7 increases with more Mn
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Voltage (V)

Mixed Olivine Systems: Li(Fe,Mn)PO,

*Developed a simulation model to study mixed olivines with ab initio
‘Developed theory for change in potential of plateau voltages
*Currently addressing diffusion, polarization and phase
transformation kinetics in mixed olivines
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Mixed Olivine Systems: Li,,(Fe,,Mn,)PO,

tunnels
Partially ordered chain
fragments
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Nanoeffects

Effects on solubility (LiFePO,)
Effects on Potential (Fe-fluoride conversion systems)

Effects on storage mechanism (in progress)



Surface properties contribute to observations in

small particles

Issue: Is the increase in solubility observed in nano LiFePO, due to increased
contribution from surface or more intrinsic ?

Calculated surface redox potentials:
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Conversion Reactions: Understand hysteresis
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Conversion Reactions: Understand hysteresis
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Conversion Reactions: Nanoeffects on potential

FeF; +3Li -> Fe+ 3LIiF

What happens when Fe precipitates as nano ?
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Novel Materials Discovery

* High-throughput computing

* Integration of ab initio methods with database
of known compounds and design strategies to
make new ones

* Automation



High-Throughput Searching for New Materials:

Calculate thousands of known and new compounds

*First principles methods have been developed for many relevant electrode
properties: voltage, Li mobility, phase stability, thermal stability ..

*Now developed ability to predict/calculate these properties on thousands of
compounds by automation of computation
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Voltage and theoretical capacity of over 4000

compounds calculated
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LI mobility: evaluated ALL structures in ICSD database

(about 30,000) and organized by prototype

Developed ability to automatically find diffusion paths for Li in structures.

Evaluated thousands of known structures...



Thermodynamic Stability: Construct ground state diagrams

of multi-component materials

Calculated thousands of ternary
Li-M-O phase diagrams: ternary
+ quaternary

Useful for stability and safety
evaluations

Li



Future work (Goals)

* Further increase emphasis on novel materials by high-
throughput computing: currently already implemented
voltage, capacity, thermdynamic stability. Aim for kinetic
stability, advanced Li mobility in next year.

At least one experimental verification of a new
material.

Olivines: Get to a complete understanding of the
lithiation mechanism of olivine materials: LiFePO,,
LiMnPO, and mixed olivines. Understand nucleation,
interface velocity, and possible surface limitations by
Monte Carlo simulation and continuum theory.

Effect of nano on performance (non-trivial): surface Li
storage on metals and oxides. Change in phase
transformation behavior with size.
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