

Experiments and Modeling of Two-Stage Combustion in Low-Emissions Diesel Engines

Rolf D. Reitz, Sage L. Kokjohn, Thaddeus A. Swor, and Michael J. Andrie* Engine Research Center, University of Wisconsin-Madison

Acknowledgments:

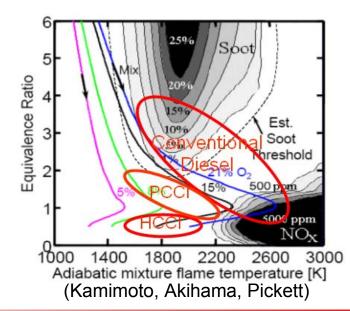
DOE/Sandia National Labs

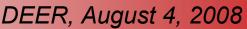
Diesel Emissions Reduction Consortium (DERC)

August 4, 2008

Presentation Outline

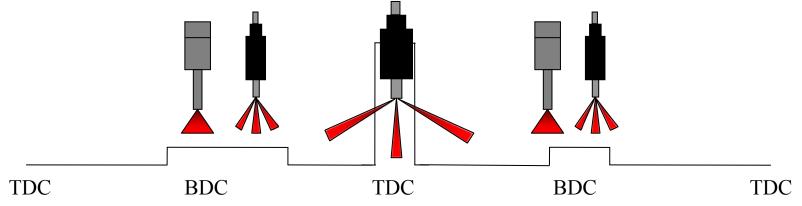
- Motivation and background
- Numerical models and validation
- Simulation results and discussion
- Experimental setup
- Experimental results and discussion
- Conclusions





Motivation and Background

- Emissions standards are becoming more and more stringent
- A focus on the reduction of greenhouse gases has driven a need for increased efficiency
- HCCI can yield high efficiency, low NOx & PM
- Y. Sun used the TSC concept to expand operating range of HCCI combustion in a heavy-duty engine (SAE 2008-01-0058)
- HCCI problems and solutions
 - Ignition control
 - EGR & VVA
 - Excessive pressure rise rates
 - Two-stage combustion (TSC)
 - Spray-wall impingement resulting
 - from early injection
 - Adaptive injection strategies (AIS)



<u>AIS (Yong Sun SAE 2008-01-0058)</u>

- Low-pressure (<50MPa, 5~25MPa) narrow-angle injection
 - -- <u>Early injection</u>: intake or early compression stroke \rightarrow HCCI, PCCI combustion
 - -- <u>Post injection</u>: late expansion or exhaust stroke \rightarrow DPF, LNT regeneration
- High-pressure (>50MPa, above 100MPa) wide-angle injection

-- <u>Late injection</u>: late compression or early expansion stroke \rightarrow conventional diesel, PCCI combustion

- Low load: HCCI combustion → early injection
- Medium load: Two-Stage Combustion (TSC) → early + late injections
 - -- Sun, Y., SAE 2006-01-0027

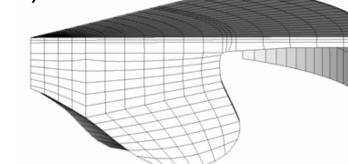
High load: conventional diesel combustion \rightarrow late injection

Specifications

Engine Specifications

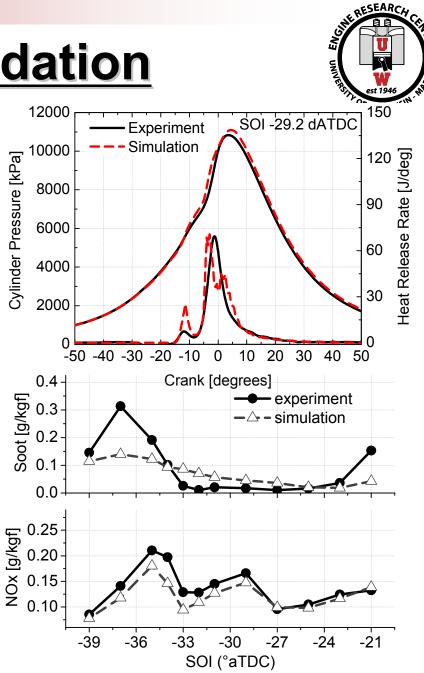
Base engine type	GM1.9 L
Bore	8.2 cm
Stroke	9.04 cm
Connecting Rod Length	16.1 cm
Squish height	0.0617 cm
Displacement	0.4774 L
Compression ratio	16.5:1
Swirl ratio	2.2
Bowl type	re-entrant
Intake valve opening	344° ATDC Firing
Intake valve closing	-132° ATDC Firing
Exhaust valve opening	112° ATDC Firing
Exhaust valve closing	388° ATDC Firing

Injector Specifications


Injector type	High-pressure solid-cone
Manufacturer	Bosch
Injection pressure	860 bar
Included angle	155°
Number of holes	7
Nozzle hole diameter	141 µm

Numerical Models

- KIVA-3V Release 2 code coupled with CHEMKIN II
 - 39 species and 131 reaction n-heptane mechanism
- RNG k- ε turbulence model
- Gasjet theory used to model near nozzle droplet/gas relative velocity (SAE 2008-01-0970)
- KH-RT break up model
- Unsteady droplet vaporization
- Drop collision and coalescence

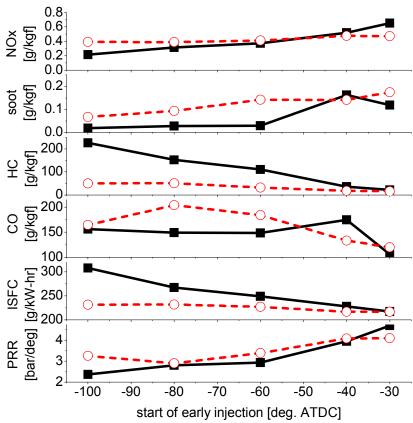

Multi-objective genetic algorithm (MOGA) optimization

Model Validation

- Validation was performed against PCCI experiments of Opat et al. (SAE 2007-01-0193)
- Engine was operated at the F4 condition

Engine speed (rev/min)	2000
Nominal IMEP (bar)	5.5
Fuel flow rate (kg/hr)	0.895
EGR rate (%)	65
IVC Temperature (K)	350
IVC Pressure (bar)	1.91
SOI (°ATDC)	-16.2 to -34.2

DEER, August 4, 2008

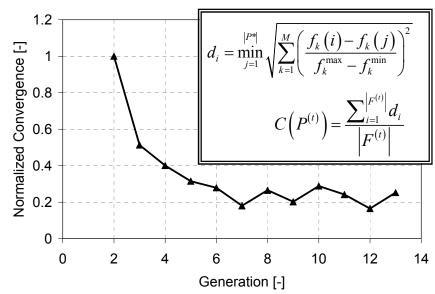

Simulation Results & Discussion

Preliminary investigation

- Fixed parameters to those of TSC case found by Kokjohn and Reitz (2008-01-2412)
- Swept early injection timing at two injection pressures
 - 100 bar and 860 bar
- Low pressure early injection showed a significant reduction in spray-wall impingement

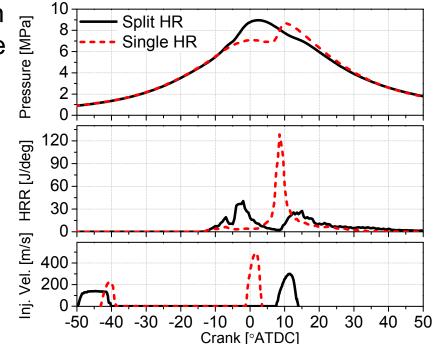
IVC Pressure (bar)	1.74
EGR rate (%)	54
SOLI timing (°ATDC)	2.9
Late injection pressure (bar)	860
Early injection fueling (mg)	5.36
Late injection fueling (mg)	9.54

High pressure early injection
 Low pressure early injection


DEER, August 4, 2008

AIS Optimization

- Multi-Objective Genetic Algorithm (MOGA)
- Seven optimization parameters
- Minimize six objectives
 - NOx, soot, HC, CO, ISFC, and PRR
- 13 generations with a population size of 24
 - 20 hours/case on 3.0 GHz AMD
 Athalon[™] processor
 - Monitored convergence by comparing location of current generation Pareto front to the location of all other Pareto solutions


Early inj. pressure	100 ~ 1500 bar	
Late inj. pressure	600 ~ 1500 bar	
Early inj. timing	IVC ~ (SOLI-30) °ATDC	
Late inj. timing	-10 ~ 25 °ATDC	
IVC pressure	1.67 ~ 3.0 bar	
Fuel split	10 ~ 90 % total fuel	
EGR rate	0 ~ 65 %	

AIS Optimization

- Both strategies utilize low pressure early injections
- 1) Split Heat Release
 - ~50% fuel split
 - Moderate EGR (43%)
 - Very retarded second injection
- 2) Single Heat Release
 - 30% fuel injected early
 - Second injection near TDC
 - Similar to UNIBUS strategy

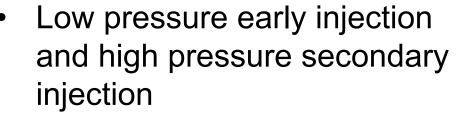
			Parameters						Objectives						
		Early	Late	ı		IVC	fra			Max	Net				
		Inj. Pres.	Inj. Pres	SOEI	SOLI	Press.	С	EGR	IVC	PRR	ISFC	soot	NOx	CO	HC
0		bar	bar	°ATDC	°ATDC	bar	_	%	°ATDC	bar/deg		g/ł	kW-hr		
V	Split HR	110	774	-49.7	7.5	2.5	0.5	43	-100	4.8	194	0.68	0.1	45	7.0
N	Single HR	563	1384	-43.1	-1.3	2.4	0.3	54	-104	6.7	196	0.21	0.1	23	8.4
A	Baseline-LTC	860	NA	-28.2	NA	1.91	1	65	-132	5.5	199	0.004	0.004	46	9.0

Adaptation of AIS for Experiments

Engine Specifications

Base engine type	GM1.9 L		
Bore	8.2 cm		
Stroke	9.04 cm		
Connecting Rod Length	16.1 cm		
Squish height	0.11 cm		
Displacement	0.4774 L		
Compression ratio	15.5:1		
Swirl ratio	2.2		
Bowl type	Mexican-hat		
Intake valve opening	344° ATDC Firing		
Intake valve closing	-132° ATDC Firing		
Exhaust valve opening	112° ATDC Firing		
Exhaust valve closing	388° ATDC Firing		

Injector Specifications


Injector type	High-pressure solid-cone
Manufacturer	Denso
Included angle	155°
Number of holes	8
Nozzle hole diameter	128 µm

- Hardware limitations prohibited use of VVA
- Lower compression ratio
- Mexican-hat combustion chamber
- 8 hole Denso injector

Variable Pressure Pulse System

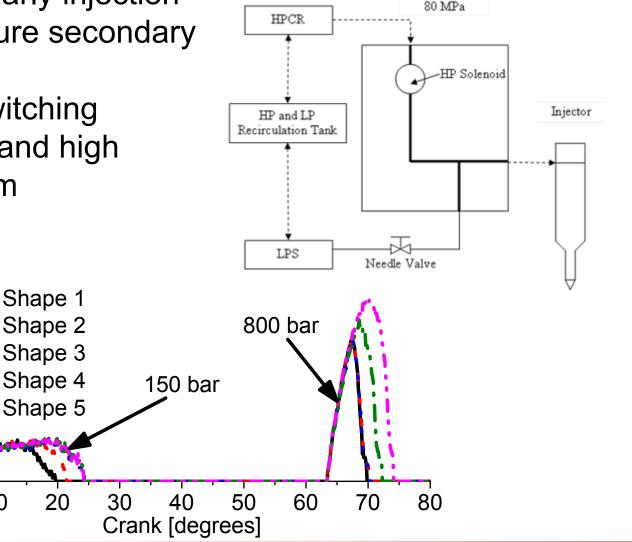
12

 Achieved by switching between a low and high pressure system

25

20

15


10

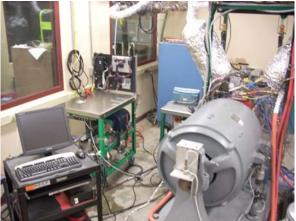
5

0

10

njection Rate [mg/ms]

DEER, August 4, 2008


DESEARCA

Variable Pressure Pulse System

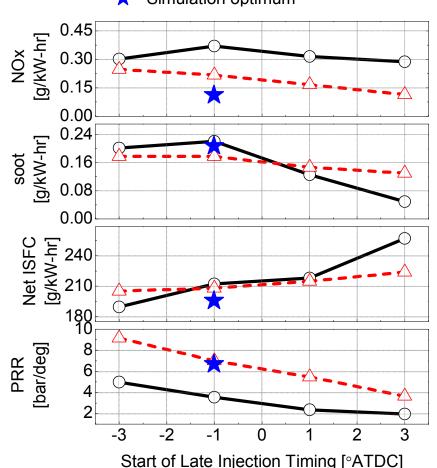
- Consists of:
 - High Pressure Common Rail
 - Low Pressure Fuel System
 - Switching Solenoid
 - Needle Valve
 - Relief Orifice
 - PFIM controller
 - Synchronize the solenoid and injector

AIS Experimental Results

Split Heat Release Cases

	Experiments/ Simulations	GA Optimum Split Heat Rel.
Early inj. pressure	150 bar	110 bar
Late inj. pressure	800 bar	740 bar
Early inj. timing	-53 °ATDC	-49 °ATDC
Late inj. timing	5.8 ~ 12.8 °ATDC	7.5 °ATDC
Boost	1.55 bar	2.35 bar
IVC timing	-132 °ATDC	-100 °ATDC
Total Fuel	13 mg/stroke	14.9 mg/stroke
Early Inj. Fuel	40 %	50 %
EGR rate	47 %	43 %
Nominal IMEP	4.3 bar	5.5 bar

- Experiment Simulation Simulation optimum 0.8 NOX [g/k/V-hr] 0.6 0.4 0.2 0.0 [g/kW-hr] 0.8 soot \star 0.4 0.0 [Ju-240 210 **Net ISFC** × 180 PRR [bar/deg] \star 4 2 0, 4 5 6 7 8 9 10 11 12 13 Start of Late Injection Timing [°ATDC]
- Simulations capture emissions trends and magnitudes very well
- GA optimum shows that significant improvements in NOx and ISFC are possible with higher boost and early fueling


AIS Experimental Results

Single Heat Release Cases

	Experiments/ Simulations	GA Optimum Single Heat Rel.
Early inj. pressure	150 bar	560 bar
Late inj. pressure	1000 bar	1400 bar
Early inj. timing	-53 °ATDC	-43 °ATDC
Late inj. timing	-3 ~ 3 °ATDC	-1 °ATDC
Boost	1.62 bar	2.32 bar
IVC timing	-132 °ATDC	-104 °ATDC
Total Fuel	14.9 mg/stroke	14.9 mg/stroke
Early Inj. Fuel	10 %	30 %
EGR rate	57 %	54 %
Nominal IMEP	5.5 bar	5.5 bar

Experiment
 Simulation
 Simulation optimum

DEER, August 4, 2008

- Emissions trends are captured, but simulations over predict peak PRR and under predict NOx
- GA optimum shows that significant improvements in NOx and ISFC are possible with higher boost and early fueling

Summary and Conclusions

- Significant reductions in ISFC and NOx were observed through the use of low-pressure early injection and high boost pressure
 - Net ISFC ~ 194 g/kW-hr and NOx ~ 0.1 g/kW-hr
- VVA has been shown to provide a means for premixed combustion phasing control
- A split heat release strategy (TSC) was used control pressure rise rate and reduce engine noise
 - Peak PRR ~ 4 bar/deg
- Low pressure early injections were shown to reduce spray-wall impingement, resulting in improved ISFC and HC emissions
- A variable injection pressure system was developed and used to validate the AIS/TSC computational results
- Future work will include validation of GA optimum points when VVA system is available

