

Evaluation of Powertrain Options and Component Sizing for MD and HD Applications on Real World Drive Cycles

2011 DOE Hydrogen Program and Vehicle Technologies

Annual Merit Review

May 11, 2011

Aymeric Rousseau (PI) Argonne National Laboratory

Sponsored by David Anderson

U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable This presentation does not contain any proprietary, confidential, or otherwise restricted information ENERGY

Project ID #VSS048

Project Overview

Timeline

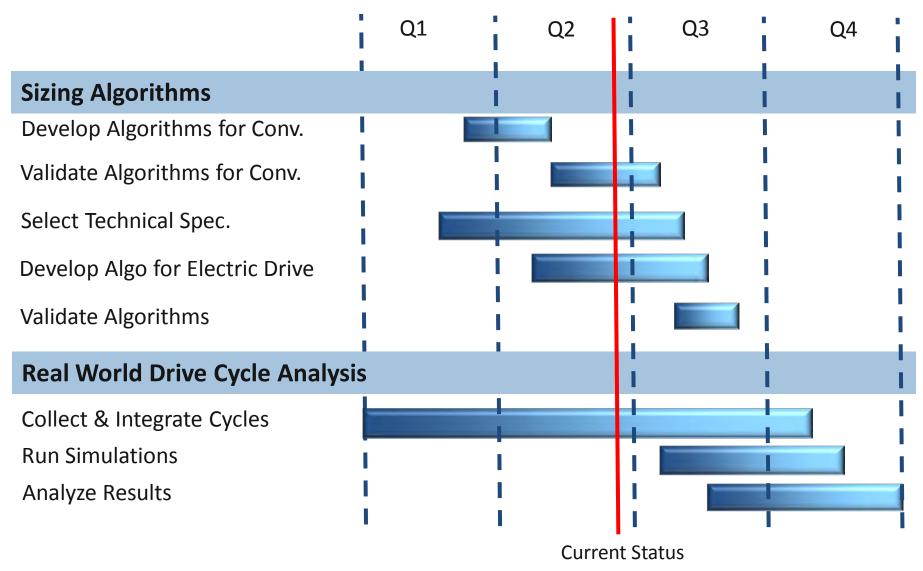
- Start October 2010
- End September 2011
- 15% Complete

Budget

- FY 11
 - \$200K (sizing algorithm)
 - \$200K (real world drive cycles)

Barriers Addressed

- Evaluate the potential fuel efficiency gains for Medium & Heavy Duty vehicles
- Provide DOE R&D guidance

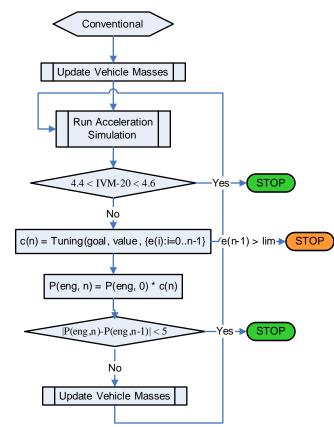

Partners

- OEMs (Navistar, Paccar, John Deere, Cummins...)
- NREL
- ORNL
- West Virginia University

Objectives

- Evaluate benefits of DOE technology for medium and heavy duty vehicles
- Due to the large number of technologies and applications, sizing algorithms are necessary to quickly determine the fuel displacement potential and provide guidance for DOE R&D
- Evaluate the impact of component sizing on Real World Drive Cycles fuel consumption
- Evaluate the benefits of powertrain technologies on Real World Drive Cycles fuel consumption

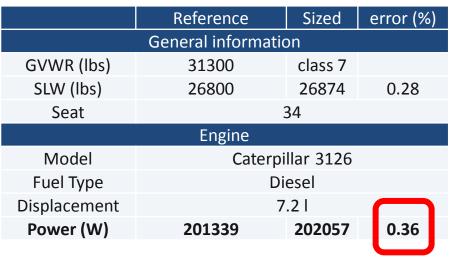
Milestones



Approach Work Directly with Companies, Nat. Labs, Universities

Sizing Algorithms Development

- Develop algorithms from "bottoms-up" (i.e., each component has its own specifications)
- Gather weight and performance information for different components for each vehicle class
- Include specific constraints for each application


Example: Conventional Vehicle

Sizing Algorithms Validation

Blue Bird Vision

	Reference	Sized	Error (%)		
General information					
GVWR (lbs)	29000	class 6			
SLW (lbs)	23250	23296	0.20		
Seat	27				
Engine					
Model	Cummins ISB				
Fuel Type	Diesel				
Displacement	6.71				
Power (W)	178968	179355	0.22		
Daimler SLF 200/35'					
		0,00			
	Reference	Sized	error (%)		
_		Sized	error (%)		
GVWR (lbs)	Reference	Sized	error (%)		
	Reference General informati	Sized on	error (%) 0.36		
GVWR (lbs)	Reference General informati 28580 24770	Sized on class 6			
GVWR (lbs) SLW (lbs)	Reference General informati 28580 24770	Sized on class 6 24859			
GVWR (lbs) SLW (lbs)	Reference General informati 28580 24770 Engine	Sized on class 6 24859			
GVWR (lbs) SLW (lbs) Seat	Reference General informati 28580 24770 Engine Merce	Sized on class 6 24859 32			
GVWR (lbs) SLW (lbs) Seat Model	Reference General informati 28580 24770 Engine Merce Di	Sized on class 6 24859 32 dez-Benz			
GVWR (lbs) SLW (lbs) Seat Model Fuel Type	Reference General informati 28580 24770 Engine Merce Di	Sized on class 6 24859 32 dez-Benz esel			

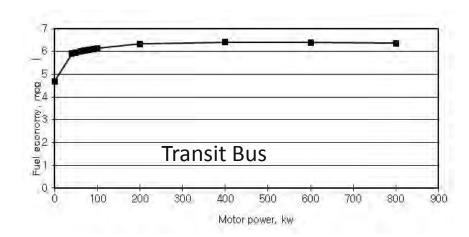
Blue Bird All American

Vehicle Technical Specification includes:

- 0-20mph, 0-30mph,
 0-40mph, 0-50mph
- Max grade at 1 mph, 25 mph and 50 mph

Transit Bus Example

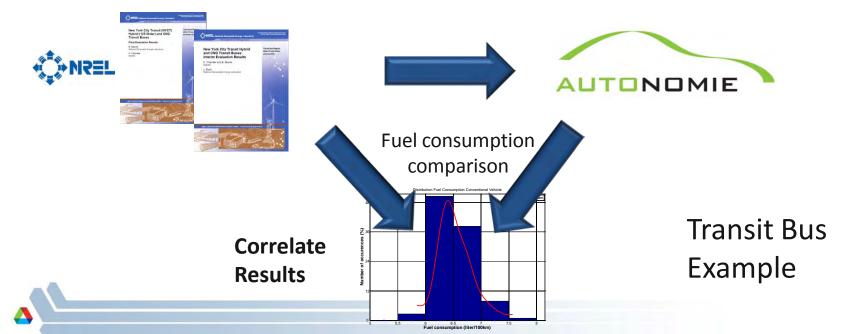
Vehicle Technical Specifications Definition for Each Application


			Gener	al informatior	1	-				
Bus manufacturer	Thomas Built®	Blue Bird	Orion	Champion Bus	New Flyer	Daimler	Nova Bus	New Flyer		
Model	SLF 200/30'	Vision	Orion VII	Defender	D40LF	229 SLF	60LFS Artic	DE 60 LFA		
GVWR	25350	29000	43000	16440	42540	26000	61729	66790		
CW		18180	28400	21630	29270	17390	41310	49460		
Seat	29	27	44	29	40	26	56			
	Engine									
Model	Cummins ISB	Cummins ISB	Cummins ISC	Mercedes- Benz	Cummins ISM	Mercedes- Benz	Cummins ISL	Caterpillar C9		
Displacement	5.9 l	6.7 l	8.3 I		10.8 l	6.7 l	8.91	9.3		<u>nomie</u> rements
Power	185 HP	240 HP	280	250	280	280	330 HP	285-350 HP	Average	StD
	Acceleration									
							-			
0-10mph	3.17	3.16	4.57	4.74	5.34	4.99	5.34	4.57	4.5	0.9
0-20mph	3.17 5.72	3.16 6.16			5.34 9.13	4.99 8.62	5.34 10.29	4.57 7.97	4.5 8.1	0.9 1.5
0-20mph 0-30mph			4.57	4.74						
0-20mph	5.72	6.16	4.57 8.77	4.74 7.85	9.13	8.62	10.29	7.97	8.1	1.5
0-20mph 0-30mph	5.72 10.76	6.16 10.18	4.57 8.77 13.67	4.74 7.85 11.53	9.13 13.78	8.62 13.83	10.29 16.63	7.97 13.37	8.1 13.0	1.5 2.1
0-20mph 0-30mph 0-40mph	5.72 10.76 17.95	6.16 10.18 16.46	4.57 8.77 13.67 23.07	4.74 7.85 11.53 17.06	9.13 13.78 22.23	8.62 13.83 22.15	10.29 16.63 28.72	7.97 13.37 23.46	8.1 13.0 21.4	1.5 2.1 4.1
0-20mph 0-30mph 0-40mph 0-50mph 1 mph	5.72 10.76 17.95 31.68 19.8	6.16 10.18 16.46 25.84 18.6	4.57 8.77 13.67 23.07	4.74 7.85 11.53 17.06 24.46 Grade 13.3	9.13 13.78 22.23	8.62 13.83 22.15 36.09 13.3	10.29 16.63 28.72 51.99 12	7.97 13.37 23.46 41.49 14.8	8.1 13.0 21.4 35.7 14.8	1.5 2.1 4.1 8.8 2.9
0-20mph 0-30mph 0-40mph 0-50mph	5.72 10.76 17.95 31.68	6.16 10.18 16.46 25.84 18.6 10.4	4.57 8.77 13.67 23.07 37.08	4.74 7.85 11.53 17.06 24.46 Grade	9.13 13.78 22.23 37.08	8.62 13.83 22.15 36.09 13.3 7.5	10.29 16.63 28.72 51.99	7.97 13.37 23.46 41.49	8.1 13.0 21.4 35.7	1.5 2.1 4.1 8.8
0-20mph 0-30mph 0-40mph 0-50mph 1 mph	5.72 10.76 17.95 31.68 19.8	6.16 10.18 16.46 25.84 18.6	4.57 8.77 13.67 23.07 37.08 13.5	4.74 7.85 11.53 17.06 24.46 Grade 13.3	9.13 13.78 22.23 37.08 12.9	8.62 13.83 22.15 36.09 13.3	10.29 16.63 28.72 51.99 12	7.97 13.37 23.46 41.49 14.8	8.1 13.0 21.4 35.7 14.8	1.5 2.1 4.1 8.8 2.9
0-20mph 0-30mph 0-40mph 0-50mph 1 mph 25 mph	5.72 10.76 17.95 31.68 19.8 9.6	6.16 10.18 16.46 25.84 18.6 10.4	4.57 8.77 13.67 23.07 37.08 13.5 7.4	4.74 7.85 11.53 17.06 24.46 Grade 13.3 9.9	9.13 13.78 22.23 37.08 12.9 7.4	8.62 13.83 22.15 36.09 13.3 7.5	10.29 16.63 28.72 51.99 12 5.9	7.97 13.37 23.46 41.49 14.8 7.3	8.1 13.0 21.4 35.7 14.8 8.2	1.5 2.1 4.1 8.8 2.9 1.6

Sizing Algorithms Electric Drive Challenge

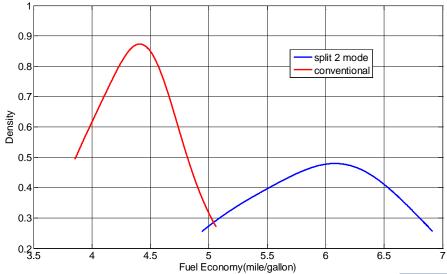
- Current vehicles are built on available hardware.
- How do we size the battery power and energy?
- What is the maximum pack voltage and its impact on configuration (i.e., series vs. parallel)?
- Can we downsize the engine? By how much?
- How do we select final drive ratios to ensure fair comparison with conventional?

Motor Power Selection



Real World Drive Cycle Collection

Application	Source	Cycles #	Comments
Class 2D	EPA	110	Kansas City
Class 2B	Chicago	600	Chicago
	NREL	17	Texas, North Caroline & Texas
School Bus	ORNL	16	Tennessee, includes grade
Transit Bus	NREL	12	King County Metro
Garbage Truck	New West	7	Includes Front, Rear and Side Loader with accessory information
Class 7 P&D	ORNL	24	Tennessee, includes grade
Utility Truck			Data requested
Line Haul			Data requested


Correlate Fuel Consumption Gains Based on Fleet Testing

- Since no dynamometer testing is performed within DOE to support validation, Argonne has been collaborating with WVU & EPA to validate specific conventional models and is collaborating with OEM to validate MD HEV.
- Fleet testing reports will be used to correlate technology benefits
 Fleet Test Reports
 Develop Vehicles

Fleet Testing Correlation

Example: Transit Bus King County Metro (NREL TP-540-40585).

- Vehicle from fleet modeled in Autonomie
- Average improvement from simulation consistent with fleet testing

 Need to refine correlation by adding cycles, understand reason behind efficiency improvements (modeled & nonmodeled)

Vehicle	% Improvement over Conventional
Hybrid #1 Test	26.8
Hybrid #2 Test	50
Autonomie Simulation	35.7

Collaborations

- Due to the nature of DOE current funding for MD and HD applications, close relationship with truck manufacturers, suppliers, universities and national laboratory is required to collect:
 - Real world drive cycles
 - State-of-the-art component information
 - State-of-the-art vehicle information
 - Vehicle Technical Specifications
- Value of data obtained through partnerships valued at several million dollars

Future Activities

- Complete on-going activities
 - Continue to collect data & define VTS for several applications
 - Develop & validate sizing algorithms for electric drive vehicles
 - Continue to collect additional real world drive cycles (RWDC) for all applications considered
 - Evaluate fuel consumption benefits of advanced technologies on the RWDC
- Expand collaborations
 - Define potential technology improvements (i.e., lightweighting, engine, aero, tires...) and their impact on fuel efficiency
- Support future Medium and Heavy Duty labeling in Europe

Summary

- Automated sizing algorithms are being developed and validated for MD & HD applications to allow efficient evaluation of fuel efficiency improvement of several technologies
- Generic Vehicle Technical Specifications are being developed to represent an "average" for the application
- Real World Drive Cycles are being collected and implemented into Autonomie to evaluate benefits uncertainty
- Leveraged several millions of dollars of data from DOE and OEMs (component, vehicle and drive cycles)