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Project Overview

Timeline

Barriers

Start Date: September 2012

End Date: September 2013
Percent Complete: 30%

Development and robust control
of LTC combustion process over
different operating points.

Budget Partners

Total Project Funding
« DOE, Vehicle Systems: $100 K
« DOE, Advanced Combustion: $100 K

Dr. Stephen Ciatti, Engine and
Emissions Research ,ANL.




Research Objective

Evaluate the Fuel Economy Impact of

Low Temperature Combustion (LTC) Technology

using Engine-in -the Loop

= Quantify the fuel economy benefit of LTC Engine on standard drive
cycles using Engine-in-the-Loop.

= Evaluate the test-to-test variability with LTC combustion compared
to diesel.

= Evaluate transient behavior through Engine-in-the Loop.

= Compare the fuel economy of the LTC technology with PFl and SIDI
engines though simulation.



Relevance

= Low temperature combustion research is being conducted by DOE to
improve the efficiency of engines for light duty passenger vehiclest .

Advanced Engine Combustion Research Supports  vs oeeasmventor | Energy Efficiency &
DOE/Industry High-efficiency, Clean Engine Goals

EN ERGY Renewable Energy

0 Goal: To develop the knowledge base for low-temperature combustion (LTC)
strategies and carry research results to products.
» Science-base for advanced combustion strategies
- Computational tools for combustion system design and optimization
- ldentify potential pathways for efficiency improvement and emission compliance

0O Close collaboration with industry through the Advanced Engine Combustion
MOU led by Sandia National Labs carries research to products.

Gurpreet Singh, Team Lead, Advanced Combustion Engines, Department of Energy Merit Review, 2012

=  One of the goals of vehicle systems research at DOE is to rapidly evaluate
components and systems though model based design and hardware in the
Loopt.

T http://www1l.eere.energy.gov/vehiclesandfuels/pdfs/program/vt_mypp 2011-2015.pdf: Vehicles System and Simulation.
 http://wwwl.eere.energy.gov/vehiclesandfuels/pdfs/program/vt _mypp 2011-2015.pdf: Advanced Combustion Engine R&D.
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Approach: Leverage Existing Expertise in Vehicle
System Simulation, Component-in-the-loop and LTC
Engine Research.

Existing vehicle
Simulation models

Existing Expertise in
LTC Combustion
in a TDI Engine

Existing experience in
Engine in the Loop




Approach: Leverage LTC Research at Argonne
National Laboratory

Compression
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LTC Technology being Evaluated on a GM 1.9 L TDI

Engine.

Property Default fuel | Fuel under
for the investigation
engine — for LTC -

# 2 diesel Low octane
gasoline

Specific 0.8452 0.7512

gravity

Low heating | 42.9 42.5

value

(MJ/kg)

Production vehicle with the engine:
2007 Cadillac BLS Wagon (Europe).

GM 1.9 L TDI Engine, 110 kW peak at 4500
RPM.

Picture and data from : S. Ciatti, S. Subramaninan, ‘An Experimental Investigation of Low Octane Gasoline in Diesel
Engines’, presented at DEER 2010, Dearborn, MI, September 29", 2010.



Approach - Design of Experiment

Fuels:
Diesel,
Gasoline
Fuel
consumption
benefits of

i hnol

e onsideredly LTC
PFI, SIDI

(both simulation)

and LTC.

Drive cycles:

UDDS,
HWFET.

Conventional midsize vehicle with manual transmission considered for the experiment.



Milestones

Simulation study to quantify
the fuel economy benefits of
LTC combustion.

Implementing engine in the
Loop with the 1.9 L TDI
engine.

EIL testing with diesel fuel.

EIL testing with
gasoline fuel.
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Current Status




Technical Accomplishments
Vehicle Fuel Consumption Correlated with Published Data

Simulation | Test**
Vehicle Cadillac BLS Wagon Fuel . 4.91/100 |4.81/100
Consumption | km km

Vehicle Mass 1560 kg (NEDC — Extra
Engine* 1.9LTDI, 110 kW, Urban)

320 Nm peak IVM-100 9.6 9.6

torque, I-4. km/h seconds seconds
Transmission Manual , 6 speed.

* Same engine to be used for the HIL study. Simulation co-relation used the steady state map
with diesel fuel. ** http://www.carinf.com/en/9220414062.html.
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Technical Accomplishments
Engine Efficiency Map Generated from Limited Data Points for
LTC (gasoline).
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Technical Accomplishments

Map Completed by Creating Efficiency Lines Proportional to
Available Efficiency Curves (from data)
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Technical Accomplishments

Engine Power Scaled for the SIDI and PFl Technologies to
Match Vehicle Specification with LTC Gasoline.

350

o~ » :;E: Target performance: IVM -100 km/hr in 9.6 seconds
N = (Cadillac BLS Wagon with a diesel engine).
£ S
gm ........... e Fuel / Combustion | Engine Scaled Power to meet IVM-
L s Technology 100 km/hr in 9.6 seconds
0 1000 2OOOSDEEZO?ORPM;OOO 5000 6000 Diesel 110 kW
Peak Torque curves for the un-sized Gasoline with LTC 115 kW

PFI, SIDI engines and the LTC engine.

Gasoline with SIDI 135 kW

Max torque of LTC gasoline
is similar to Diesel.

Gasoline with PFI 147 kW
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Technical Accomplishment

Fuel Economy Gains with Identical Engine Speed and Torque
Profile Quantified in Simulation

Engine test bench configuration

. Engine
tEngme SIDI (sized) SFEEC'
orque PFI (sized)

Average efficiency . Percentage decrease in efficiency

Percen tincrease Fuel massin kg wrt the LTI engine
wrt LTI Engine

2.5
15%
2

wLTC
el 0l
9.3% 0.16% = SID
u PFI
5% 9.3 CEL
1
10% 8.3%
0.2
03 1%
11.3 4
10%,20% 16.3% ’ %
o @R ‘
110 uUDDS HWEET LA92 Us06
110 uDDS HWFET LAg2 Us06

Engine speed and torque profile based on the Cadillac BLS Wagon gear-ratios and final drive.
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Technical Accomplishments

Simulation Comparison between LTC, SIDI and PFI
Technologies.

PFl (1.8 L Peugeot) Transmission ratios
Sliok (2.2 L ECOTEC GM) SIDI, PFI | 416 | 220 | 1.48 | 1.15 | 092 | 0.74 | GM F40 for the ECOTEC family
LTC (from generated map) LTC | 3.77 | 204 | 137 | 1.05 | 0.85 | 0.71 | Ratios for the Cadillac BLS.

N\

Final drive ratios
SIDI,PFI: 4.43 - GM F40.
LTC: 3.55 — Ratio for the Cadillac BLS.

15



Technical Accomplishments
LTC Combustion Shows Significant Fuel Economy Improvement
over PFl and DI

Fuel Economy
[mpg, unadjusted]

UDDS 26.3 30.4
HWFET 33.2 41.5 45.3
Combined[55/45] 29 34.6 37
Improvement over PFI 16% 26%
Improvement over SIDI 7%

16



Technical Accomplishment
Hardware Modifications for Engine in the Loop Underway.

Low inertia AC
dynamometer

\_

AUTONOMIE
vehicle embedded

in an INERTIA
dyno controller

HBM T10F contactless

torgue sensor with
speed pickup.

Pedal
Position

1.9 L TDI Engine
110 kW at 4500
RPM

17




Collaboration and Co-ordination with other

institutions

GM R&D, technical
support withthe 1.9L

Engine and Emissions group at ANL
Dr. Stephen Ciatti, LTC combustion
research

TDI Engine
—
(AUTONOMIE \
Virtual vehicle
model
\' NOMIE j

DOE technology evaluation
e DOE requests

/ * National Lab requests
wNREL SNL
¥ oml =~ &

%
4
S
K bl X ~ Argonne

J

fUSDrive, tech teams and OEMs

~

Share test plans, data and

analysis il Besnny

_ USDRIVE |
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Future Work

On going work for FY13

= Complete modification of engine test cell for Engine in the Loop.

= EIL testing with diesel fuel — quantify engine out emissions and fuel
consumption.

= EIL testing with gasoline using LTC technology — quantify emissions and
fuel consumption.

Potential follow-up

= Compare engine-out emissions between LTC gasoline (current
experiment) and SIDI combustion from previous study.

= Evaluate the impact of hybridization on fuel economy gains due to LTC
gasoline compared to SIDI and PFI.

19



Summary

Several existing capabilities have been leveraged to compare
the fuel consumption potential of low temperature gasoline
combustion to SIDI and PFl technologies

= Engine and emissions research on LTC.

=  Engine-in-the-loop capabilities with AUTONOMIE.

= AUTONOMIE simulation capabilities.

A process was developed to generate a complete engine map
from few selected test data points, in order to compare LTC
to SIDI and PFI by simulation.

Simulation of LTC and comparison with PFl & SIDI show
significant improvements in fuel economy.

Engine-in-the-Loop will be used to validate the fuel
consumption benefits from the simulation as well as quantify
the engine out emissions.

20
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Engine efficiency map generation
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Need for a different transmission for the LTI

Engine.
Wheel torque of the LTI Engine with the two transmissions

=200 ! ! . ! !
o — Cadillac transmission used for diesel vehicles
— GM F40 trasmission for gasoline vehicles
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Impact of sizing - increased tractive effort

with increase in engine power.
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