

Establishing Thermo-Electric Generator (TEG) Design Targets for Hybrid Vehicles

2013 DOE Hydrogen Program and Vehicle Technologies

Annual Merit Review

May 15th, 2013

R.Vijayagopal, N.Shidore, A.Rousseau, C.Folkerts

Argonne National Laboratory

&

Mike Reynolds

General Motors

Sponsored by David Anderson, Gurpreet Singh

U.S. Department of Energy

Project ID # VSS100 Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

Timeline	Barriers
Start Date : Sep 2012 End Date : Sep 2013 Percent Complete: 40%	 Multiple hybrid architectures, control logics TEG model with new materials TEG configuration decisions Limited availability of test data
Budget	Partners
 Total Project Funding DOE, Vehicle Systems: \$75 K DOE, Advanced Combustion: \$75 K 	General Motors

Relevance

Establish TEG requirements to provide cost effective power for hybrid vehicles.

- FY11 Argonne demonstrated the ability to evaluate the benefits of TEG on a conventional vehicle using simulation techniques.
- TEGs may offer additional benefits for electric drive vehicles as the electrical energy can be fully utilized
- Cost benefit analysis can be used to determine the need of 'offcycle credits'

Relevance: FY11 Work Independent Evaluation of TEG using EIL & Simulation. Confirmed by Prototype Test Results from OEMs Objective:

Evaluate the fuel economy impact of thermoelectric devices *on a conventional vehicle*, using engine-in-the-loop testing and simulation studies

Results:

- Cold & hot start conditions, effect of heat rejection by TEG and additional fan load was analyzed
- Estimated %mpg improvement in US06 and other EPA drive cycles.
- Pointed out the need for changes in fuel economy test procedure to properly evaluate TEGs benefits

Remarks:

Δ

Presented at the 3rd TEG Workshop

Results confirmed by prototype tests done by OEM.

- GM : Reviewed and agreed with Argonne estimates.
- BMW : Similar mpg gains for their X6 prototype.
- Ford : EPA & EU off-cycle credits / EcoInnovation credits

BMW X6 TEG PROTOTYPE VEHICLE. SYSTEM PERFORMANCE FOR STEADY STATE CONDITIONS.

Milestones

- Define baseline vehicle Develop & test scripts to automate simulations, result compilation
- Evaluate the fuel saving potential of auxiliary electrical energy sources on baseline vehicle
- Updating control logics of Belt Integrated Starter Generator (BISG)
- Integrating the TEG model from GM
- Evaluating the potential of the TEG on BISG
- Evaluate the benefits in other hybrid powertrain architectures

Approach

- Baseline vehicle
 - Belt Integrated Starter Generator (BISG)
- TEG module
 - TEG model is from FY-11 study
 - Add new Skutterudite module data
 - System design factors
 - # of modules and layout
 - Power rating
- What if
 - Conversion efficiency improves
 - More waste heat is recovered
 - Thermal cycling can be reduced

From John W Fairbanks, 'Automotive Thermoelectric generators and HVAC', presented at the DOE internal meeting, Washington DC, Nov 2011

Approach

- Determine the impact of an auxiliary electric power source like TEG on baseline vehicle
 - Fuel Displacement
 - Net Present Value (NPV) of the \$ savings
 - Determining the \$/W that will make such devices commercially viable
 - Will control logic changes or larger motor size improve the benefits?
 - E-Assist vs. Reducing engine usage
 - Is a larger battery or ultra capacitor necessary for capturing transient power from TEG?
- Integrate the latest TEG model from GM
- Evaluate the impact of the TEG on BISG
 - Effect of Skutterudite materials over BiTe.
 - Effect of conversion efficiency
 - Effect of varying temperature limits on TEG
 - Add other powertrain architectures

Technical Accomplishments Baseline Vehicle Defined

- Midsize 2wd vehicle
 - Belted Integrated Starter Generator
 - Engine 115 kW
 - Motor 10kW
 - Battery 1.4kWh usable
 - Auxiliary power source (up to 1kW; could be any technology such as TEG)

Technical Accomplishments TEG Fuel Saving Potential Quantified

- Assumptions
 - Steady power source, available over the entire drive cycle
 - Motor can assist engine at any speeds. Limited only by SOC thresholds
 - Benefit estimation use BISG with no auxiliary power as the baseline
- Charge Sustaining operation
- Less aggressive & longer cycles show more benefits

Technical Accomplishments Net Present Values (NPV) Estimated

- Assumptions
 - NPV of gasoline savings over the lifetime of vehicle
 - 150k miles & 15 years of vehicle usage
 - Reduced vehicle usage after the initial 6 years (based on NHTSA surveys)
 - 7% discount rate
 - Gasoline cost \rightarrow \$4/gallon

Proposed Future Work: FY13 – Ongoing work Evaluate Effect of New TEG Model from GM

- Integrate the latest high fidelity TEG model from GM
- New TEG design is still not published
 - Skutterudite material properties are known
 - Estimate number of modules & layout for TEG
 - Estimate fuel economy benefits
- Earlier studies indicated the under utilization of modules in the earlier prototype designs

Proposed Future Work: FY14 Potential Activities Explore New Ideas, Establish Requirements, Benchmarks & Design Targets For TEGs to be Cost Effective

- New ideas related to the use of TEG
 - What if we can store all the exhaust heat from the engine?
 - How much exhaust heat do we need for it to be cost effective?
 - Can a thermal reservoir enable the use of other TEG materials
 - With thermal reservoirs, can thermal cycling of TEGs be reduced?
 - Can this facilitate use of cheaper materials ?
 - What if we raise the conversion efficiency with current TEG system designs
- GM will provide feedback for critical and practical sense checking
- Simulate cases that look promising

Summary

- How much promise do TEGs hold for E-assist vehicles ?
 - For an auxiliary power source of 1kW steady electric power
 - Simulations show 5% 14% mpg increase, depending on cycle
- How much can the customer pay for an auxiliary energy source/recovery device in an E-assist vehicle?
 - \$0.5 to \$2 per W (assuming steady power over entire drive)
- Next Steps
 - Evaluate the potential of the new TEG from GM
 - # of Skutterudite modules
 - Configuration
 - Evaluate new ideas for TEG