

Proudly Operated by Battelle Since 1965

Encapsulation of High Temperature Thermoelectric Modules

SCOTT WHALEN

Pacific Northwest National Laboratory Advanced Power and Energy Systems

Directions in Engine Efficiency and Emissions Research (DEER) 2012

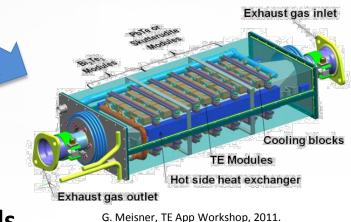
Dearborn MI, Oct. 18th, 2012

PNNL-SA-90903

Introduction

Proudly Operated by Battelle Since 1965

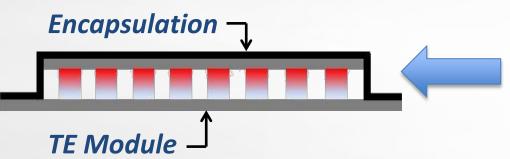
Problem Description


- Skutterudite materials are highly susceptible to oxidation
- Oxide is not self limiting. Materials degrade quickly in air at operating temps
- System level barriers are currently employed to prevent oxidation

Goal

- Develop module level encapsulation to enable long term durability of TE materials
- Most applicable to system architectures using a traditional module geometry

J. Salvador and G. Meisner, DEER, 2011.

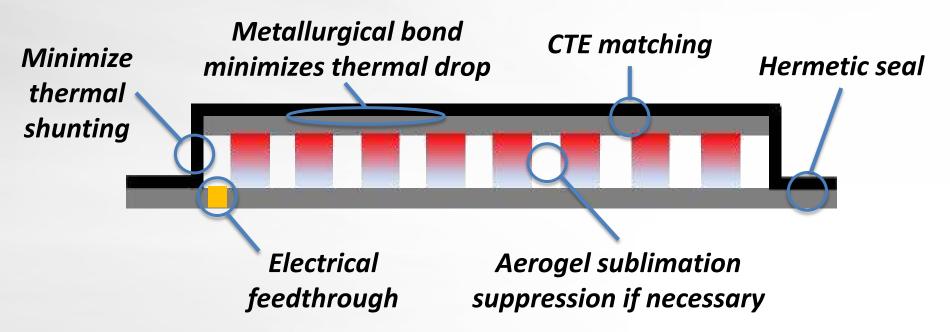


Module Encapsulation

Advantages

- Enables redundancy or elimination of system enclosure
- Hermeticity of system level enclosure is not required
- Offers system level design flexibility
- Hermetic barrier not exposed to harsh environment
- System maintenance would not disrupt critical seal
- Potential for reduced system cost
- May reduce thermal shunting

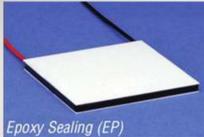
G. Meisner, TE App Workshop, 2011.


Module Encapsulation

Proudly Operated by Battelle Since 1965

Design Considerations

- Encapsulate modules after assembly
- Operate continuously at T_{hot}=500°C
- Manufacturable and low cost


Encapsulation Approaches

Proudly Operated by Battelle Since 1965

Low temperature moisture barriers

Polymer Coatings

Macor data sheet: http://www.who-sellsit.com/cy/melcor-2923/thermal-solutions-14593/page-12fullsize.html

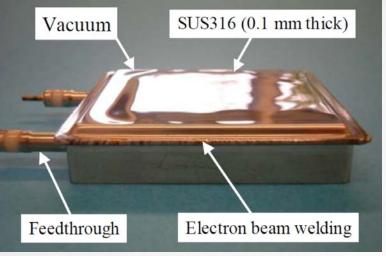
Metal Enclosure

Altec 1096M Thermoelectric Module Photo courtesy of Pawan Gogna, JPL

• Oxidation of BiTe not an issue < 250°C

Conformal Coating (EC)

- Polymer not suitable at T_{hot} = 500°C
- Hermeticity of coatings not testable by leak testing
- Organic feedthrough is not hermetic
- Mechanical interface between metal enclosure and ceramic plates
- CTE of SS does not match ceramic 5


Encapsulation Approaches

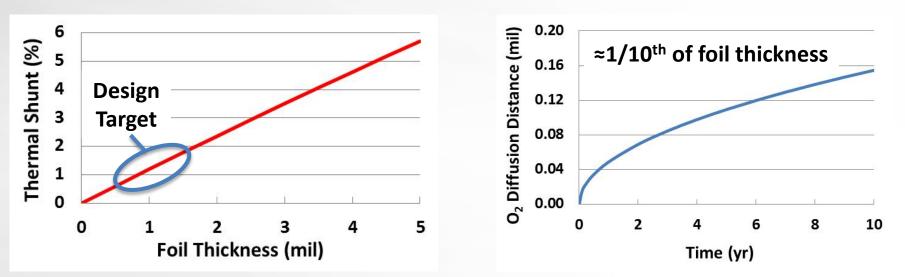
Proudly Operated by Battelle Since 1965

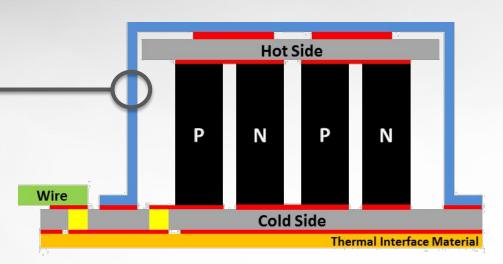
High temperature concepts

Metal Enclosure

M. Kambe, et al., J of Elec and Mtrl, 2010

- Tested SiGe modules to T_{hot} = 550°C
- Machined SS container
- Bulky housing and feedthroughs
- E-beam welding
- Mechanical thermal interfaces


- Aerogel for sublimation suppression
 - Use in combination with encapsulation
- Barrier coatings
 - Use as hermetic barrier is challenging
 - Crack or delam opens oxidation path


Encapsulation Concept

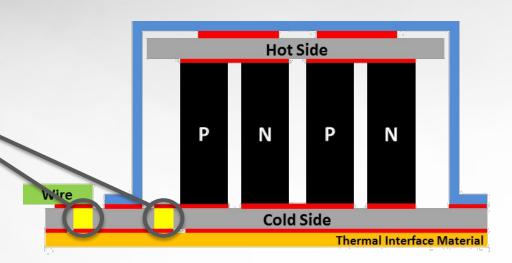
Key Design Features

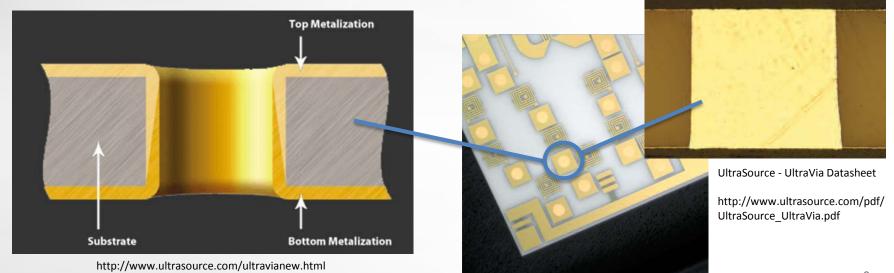
1. Metal Cap

Metal foil with CTE of ceramic Thermal shunting <2% of total heat flow Oxygen diffusion depth << foil thickness Concepts to further reduce shunting

Proudly Operated by Battelle Since 1965

Encapsulation Concept



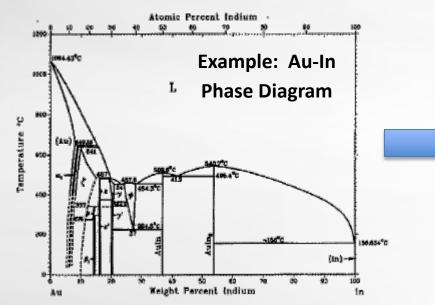

Proudly Operated by Battelle Since 1965

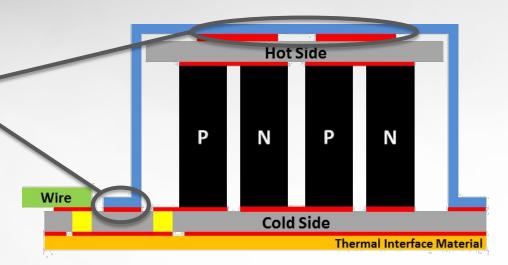
Key Design Features

2. Conductive Vias

Metallic vias through ceramic Thickness up to 1mm Diameter up to 0.5mm Low resistance $\approx 0.1m\Omega$

Encapsulation Concept




Proudly Operated by Battelle Since 1965

Key Design Features

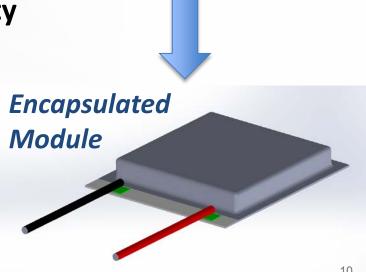
3. Metallurgical Bonds

Minimize interface thermal impedance Must be stable above hot side temp Transient Liquid Phase Bond (TLP) Process at low temp, re-melt at high Flux-less process

Metal Cap
Gold - 1mil
Indium - 2mil
Metallization
Ceramic

Summary

Proudly Operated by Battelle Since 1965


- Skutterudite materials are susceptible to oxidation
- Module level encapsulation prevents oxidation

Advantages

G. Meisner, TE App Workshop, 2011

- **Redundancy for improved reliability**
- **Eliminate system level enclosure**
- System level design flexibility
- Potential for reduced cost and thermal shunting

