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LTC Enabling Prospects
1.

 
Optimize control by separating the time scales of fuel air 
mixing and ignition

2.
 

Stabilizing LTC operations –
 

on cliff operation of ultra 
low NOx emissions and acceptable fuel efficiency

3.
 

Guide transient combustion control within LTC mode 
when major engine operating parameters such as 
boost, EGR, and engine speed varies

4.
 

Raise engine Load level in LTC
5.

 
Mode shifts between conventional and LTC

6.
 

Multi-cylinder EGR, fuel, and air distributions
7.

 
Biodiesel Impact –

 
Cetane, oxygen content, volatility, 

viscosity, biodegradation, high pressure compressed solid
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Diesel LTC Challenges
1.

 

The fuel efficiency of the LTC cycles is commonly mired by the high 
levels of hydrocarbon (HC) and carbon monoxide (CO) emissions. 
The fuel-efficiency of HCCI engines is often compromised by the high 
levels of HC and CO emissions that may drain substantial amount of 
fuel energy (5~15% in low-load cases) from the engine cycle.

2.

 

Moreover, the combustion process becomes less robust and enters 
into narrower operating ranges and with higher instabilities compared 
to conventional high temperature combustion (HTC) operations –

 

LTC 
is closer to the flame-out limits than HTC.

3.

 

The scheduling of early fuel delivery in HCCI engines has lesser

 
leverage on the exact timing of auto-ignition that may even occur 
before the compression stroke completes when a high compression 
ratio of conventional diesel cycles is applied, which may cause 
excessive efficiency reduction and combustion roughness.

4.

 

The high HC and CO emissions are attributed to the relatively low 
volatility of diesel fuels, the lowered combustion efficiency of

 

the lean 
and/or EGR weakened cylinder charge, the non-homogeneity of the 
cylinder charge, and the fuel condensation and flame quenching on 
the surfaces of the combustion chamber.
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Research Platform
 –

 
non compromised for control performance

The research platform consists of an advanced common-
 rail diesel engine modified for the intensified single 

cylinder research and a set of embedded real-time (RT) 
controllers, field programmable gate array (FPGA) 
devices, and a synchronized personal computer (PC) 
control and measurement system. Up to 12 fuel injection 
pulses per cylinder per cycle have been applied to 
modulate the homogeneity history of the cylinder charge 
in mixed mode combustion in order to improve the 
phasing and completeness of combustion under 
independently controlled exhaust gas recirculation 
(EGR), intake boost, and exhaust backpressure.
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Experimental Setup
 -

 

Capable of multiple parallel 
1st

 

priority control tasks

Engine Type 4 Cylinder, Ford “Puma” 
Displacement [cm3] 1998 
Bore x Stroke [mm] 86 x 86 
Compression Ratio 18.2:1 
Combustion System Direct Injection 
Injection System Common-rail; PRail ≤ 160 MPa 
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Adaptive Combustion Control Platform
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Fuel Injection Scheduling
1.

 

Up to 12 fuel injection pulses per cylinder per cycle have been applied 
to modulate the homogeneity history of the HCCI operations in order to 
better phasing and completing the combustion process.

2.

 

Empirical studies have been conducted under independently controlled 
exhaust gas recirculation (EGR), intake boost, and exhaust 
backpressure. 
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Challenges in Digital Combustion Control

1.
 

Adaptation step relaxation versus prompt 
performance modulation

2.
 

Cylinder pressure noise filtration versus signal 
sharpness

3.
 

Simplex feedback control versus model based 
forward control

4.
 

Fuel injection pulse numbers versus total injection 
time window of the least condensation



10Zheng

Experimental Case Outline

1.
 

Single shot with heavy EGR to separate the 
time domains between injection and 
combustion

2.
 

Multiple early shots with moderate EGR to 
improve homogeneity

3.
 

Multiple early plus main to gain power output
4.

 
Speed and boost transients
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DIESEL LTC CHALLENGES
•

 
Prolonged Ignition Delay to enable LTC 
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New LTC 
Emission 
Trade-off
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Diesel LTC vs. Engine Load

Relatively high CO & HC 
penalty due to large injection 
quantity/shot; Use of heavy 
EGR to improve combustion 

phasing 
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Combustion Cycle Efficiency Calculations
•

 
Exhaust hydrocarbon energy with respect to fuel input at 
different engine loads 
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Engine Cycle Simulation
•

 
Heat release rates used as input for simulations 

 

320 330 340 350 360 370 380 390 400
CA50 [°CA]

H
ea

t R
el

ea
se

 R
at

e 
[1

/°
C

A
]

Duration variation

Phase variation

(TDC)

Shape variation

Splitting



16Zheng

Engine Cycle Simulation Results
Effect of CA50 and combustion duration on ηind

 

, pmax

 

& (dp/dθ)max

 

(1500 RPM, 
IMEP: 6 bar, Pint

 

: 1.15 bar abs)

Conventional DieselTypical HCCI Conventional DieselTypical HCCI Conventional DieselConventional DieselTypical HCCI
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Engine Cycle Simulation Results
•

 

ηind

 

comparison between –

 

Upper: different heat release shapes; 
Lower: single hump and split combustion
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Equivalent Combustion Cycle Deficiency Calculations

•
 

Equivalent THC penalty with CA50 off-phasing
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Cycle Based Adaptive Control to Improve 
LTC Transients

1.
 

SOI synchronized at optimized HR phasing via 
dPmax

 
timing modulation

2.
 

dPmax
 

ceiling limitation via pilot quantity 
modulation

3.
 

IMEP compensation via pilot and main 
modulations

4.
 

IMEP top-up control via post quantity modulation
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Transient Peak Pressure Rise Timing Modulation after 
Entering LTC with High EGR (single shot)

Injection Timing Control
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Emission Result when Entering LTC with High EGR 
under Peak Pressure Rise Timing Modulation

Injection Timing Control
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Peak Pressure Rise Timing and Rate Modulation
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Emission Results under Peak Pressure Rise 
Timing and Rate Modulation

Pilot&Main: timing & quantity control
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Peak Pressure Rise Timing and Rate Modulation 
under High EGR (NOx ~30ppm) Transients
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Transient Low NOx Confirmation with NOx Sensor
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LTC ADAPTIVE CONTROL STRATEGIES

•
 

Structure of the CDEL Adaptive Control System
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SYSTEMATIC AND ADAPTIVE CONTROL 
RESULTS

NOx as function of 
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Adaptive Control ON/OFF Comparison
 (High EGR, NOx ~20pm)
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Pressure Rise Curves under Peak Rise Timing 
and Rate Control
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IMEP Compensation (high EGR, NOx ~30ppm)
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Sample cylinder pressure and heat 
release characteristics with 

adaptive control
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Progresses in LTC Control
 -

 
Reduce reliance on de-NOx after-treatment

1.

 

The simulations and empirical results indicate that the combustion 
phasing dominates the maximum attainable fuel efficiency of the 
engine. However, the phasing domination cedes to high HC when the 
fuel efficiency is severely deteriorated such as by excessive EGR.

2.

 

The energy deficiency of typical LTC heat release patterns has been 
further quantified by comparing with HC and CO emissions with 
combustion phasing deficiency across the engine load spectra.

3.

 

Adaptive control strategies based on cylinder pressure and heat 
release characteristics are implemented to stabilize and enable the 
low-temperature combustion from mid to high loads especially when 
high boost and EGR are applied.

4.

 

Further, oxygen and NOx sensors at the intake and exhaust of the

 engine are devised to comprehend the transient impacts of EGR, 
boost, and load variations.

5.

 

The multi-pulse scheduling is effective to prevent premature ignition 
and elevated NOx and soot.
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Prospective LTC Load Control Improvements

1.

 

The mode of EGR enabled LTC
 

is suitable for low load operations, in 
which a single shot of fuel is delivered close to the top dead center 
(TDC). The heat release phasing is fully controllable via injection timing 
control and thus high energy efficiency in attainable.

2.

 

The mode of early injection HCCI
 

is suitable for mid load operations, in 
which the fuel is delivered in multiple events and by milliseconds prior to 
TDC and thus the heat release phasing is not directly controllable. EGR 
is commonly applied suppress premature ignition and combustion noise.

3.

 

The mode of split burning LTC
 

is suitable for high load operations, in 
which a partial amount of fuel is delivered to produce HCCI combustion 
and the remaining for post TDC late combustion. The latter may be 
benefited from the virtual EGR produced by the prior HCCI burning and 
timed to best eliminate combustibles and raise power output.
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