Poster P-18

Enabling Low Temperature Combustion Through Thermo-Chemical Recuperation

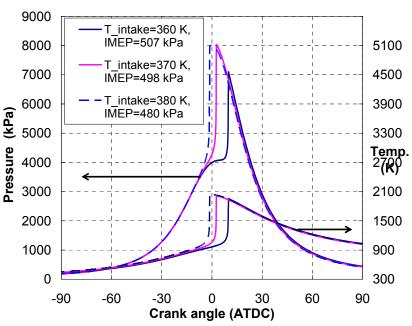
Nigel N. Clark, Clint Bedick, Francisco Posada

Center for Alternative Fuels, Engines & Emissions (CAFEE) Department of Mechanical and Aerospace Engineering West Virginia University Morgantown, WV

John Pratapas, Aleksandr Kozlov, Martin Linck and Dmitri Boulanov

Gas Technology Institute (GTI), Des Plaines, IL

A DATES OF SHE


Funding: U.S Department of Energy Award Number DE-FC26-05NT42632

Project Summary

- Provide efficient, low emissions power by enabling LTC through the use of waste heat fuel reforming
- LTC Benefits and Drawbacks
 - High efficiency
 - Low emissions
 - Load range limitations and control issues
- Control may be achieved using two separate fuel streams
 - o Diesel primary fuel
 - Secondary fuel generated on-board using waste exhaust heat and TCR technology
- Approach based on trading lower power density for increased displacement
- Combustion, friction and auxiliary losses, and heat transfer models run to compare LTC and CIDI

