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• Start: April 1, 2009
• Finish: Sept. 30 2014
• 40%

• Barriers addressed
– Cycle life
– Calendar life
– Abuse tolerance

• Total project funding
– DOE share: $1200 K
– Contractor share

• FY10: $ 300 K
• FY11: $ 300 K

Timeline

Budget

Barriers

• Interactions/ collaborations
• Enerdel®, A123®, JC_Saft
• Central Glass®

• Grant Smith, University of Utah
• Kevin Gering, INEL

Partners

Overview



 An integrated theoretical/experimental program to understand how 
electrolyte additives work and find new ones for increased cycle life, 
calendar life, safety of lithium ion batteries

 Develop advanced quantum chemical models to understand and 
predict functional additives that form stable Solid Electrolyte 
Interphase (SEI) on anodes and cathodes as well as shuttles for 
overcharge protection
– Past year: increase database of additive candidates for anode 

SEI formation; screening for promising initial decomposition 
pathways; insight into new experimental  additives 

 Experimental studies of new additives for protective SEI formation 
and shuttles for overcharge protection
– Past year: synthesis of new organic additives; investigation of 

modification of salts as additives; testing performance of new 
additives for anode SEI’s including impedance and cycle life 

Objectives
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Approach
Search for new electrolyte materials that react in a preferential manner 
to prevent detrimental decomposition of other cell components

Theoretical methods
 Accurate quantum chemical calculations of energies to obtain 

reduction and oxidation potentials, reaction energies, barriers
 Density functional theory (B3LYP); very high accuracy Gn 

theories 
 Continuum model for solvation effects 
 Multi-scale modeling: collaboration with  Grant Smith (Utah)

 Provide accurate quantum chemical data for use in more 
approximate modeling at larger scales

Experimental methods
 Cycle life testing
 Impedance testing 
 Organic synthesis of new additives
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Accomplishment: Screening of reduction 
potentials of over 275 additive candidates

 Bar chart shows the distribution of the reduction potentials relative to Li electrode of more 
than 275 candidate additives; information on the candidates is stored in a database

 More than 160 candidate additives have favorable reduction potentials of greater than 1 eV
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Accomplishment: Screening for initial decomposition step 
after reduction
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 Screening of candidates in the 
database has so far found four 
groups of molecules with possible 
favorable decomposition 
mechanisms 
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Accomplishment: Investigation of impedance of SEI films 
formed from LiBOB and LiDFOB

AC impedance of MCMB/Li1,1[Mn1/3Ni1/3Co1/3]0.9O2 lithium-
ion cells using different electrolytes showing the advantage of 
LiDFOB over LiBOB.  The baseline electrolyte is 1.2 M LiPF6 in 
EC/EMC (3:7 by weight).
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AC impedance of 
MCMB/Li1,1[Mn1/3Ni1/3Co1/3]0.9O2 
lithium-ion cells using different 
electrolytes.  

After tested at 55C for 1000 cycles, the cell with 2 wt% LiDFOB still had 78 % capacity retention, 
while the cell without LiDFOB addition lost about 25 % reversible capacity after 80 cycles 



Accomplishment: Calculation of some possible first 
decomposition steps of LiBOB and LiDFOB

 (a) and (c) are possible reaction occurring upon reduction of BOB anion
 (c) is the most likely reaction occurring upon reduction of DFOB anion

[LiB(C2O4)2] reduction reactions [LiBF2(C2O4)] reduction reactions



 Calculations indicate that fluorine substitution results in 
products, which could lead to polymeriztion, that are more 2-
dimensional than the BOB products

 Could be responsible for thinner films and lower impedance

Possible BOF2
- reactions Possible OB(C2O4)- reactions

Accomplishment: Calculation of possible first 
decomposition steps of LiBOB and LiDFOB



Accomplishment: Improved performance by salt 
additives – LTOP, LTFOP
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 Addition of 1~3 wt% LTFOP improves the cycle life, 3% shows the best result.
 More additive decreases the capacity due to thicker SEI layer formation.
 Addition of 1~3 wt% LTOP shows the similar improvement on the cycle life.

1C rate for cycling at 55°C
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Accomplishment: Improved performance by salt 
additive – LTOP, LTFOP
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Accomplishment: Differential capacity profiles of 1,3,5-
triallyl-1,3,5-triazinane-2,4,6-trione (TTT) and Gen 2 
electrolyte
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coin cells in 3E7EMC/PF12 with or without 1 wt% additives. 
The cells were cycled at 55 ◦C. The charge rate was C/10. 
The cut-off voltages were 3 ~ 4 V.
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Capacity retention of  MCMB-
1028/Li1.1[Ni1/3Co1/3Mn1/3]0.9O2 
coin cells in 3E7EMC/PF12 with or 
without 1 wt% additives.  The cells were 
cycled at 55 ◦C. The charge rate was 1C.  
The cut-off voltages were 3~4 V.

 Predicted favorable decomposition

 TTT shows improved performance as an additive; 
nature of SEI needs further investigation
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Accomplishment: Investigation of reaction pathways for 
ethylene carbonate (EC) reactions for lithium alkyl formation 

including reaction barriers
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 Lithium alkyl carbonate formation 
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Collaborative effort on multi-scale 
modeling of SEI formation

 Accurate quantum chemical 
calculations with continuum 
model for solvent (this project)

 Force fields for MD simulations 
(Smith, Utah)
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Accomplishment: Investigation of reaction pathways for 
different possible EC reduced species
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Accomplishment: Determination of singlet/triplet and open-shell singlet 
reaction barrier for reaction of two EC open radicals

Li

Li

C----O attack

LiLi

LiLi

C----O attack

Open-shell singlet (OSS) 
barrier

 Ethyl product is unfavorable –
large barrier

 Butyl product is favorable

“Ethyl” product

–70

–8
–4

–69

carbonate complexcarbonate complex

“Butyl” product

S

T

OSSS

T

OSSOSS



Accomplishment: Assessment of most favorable pathways to 
get to “ethyl” carbonate

Li

carboxyl attack,
+ 8 kcal/mol

Li-EC(open)

linear butyl carbonate,
-69 kcal/mol

Li-EC(open)

cyclic butyl carbonate, 
-70 kcal/mol

Li-EC(open)

+ e

EC + Li+

 Two- electron reduction appears 
to be the only viable pathway to 
get to the ethyl carbonate

ethyl carbonate,
-58 kcal/mol

Li-EC(open)
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Accomplishment: DFT Investigation of Li2CO3 growth 
structures on a graphite edge surface

 Many structures investigated for adsorbates

 Defect sites (missing hydrogens) on the graphite edges are very reactive towards 
Li2CO3 and are likely nucleation sites for lithium carbonate SEI growth. 

monomer

dimer
trimer tetramer

graphite
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 Industrial Partners

– Validation of additives in a full cell configuration

• Enerdel, A123, JC-Saft

– Materials

• Central Glass

 Collaborators

– Grant Smith (university of Utah) 

• Multi-scale modeling: provide accurate quantum chemical data for use in 
more approximate modeling at larger scales

– Kevin Gering (INEL)

• Modeling conductivity 

– Y. K. Sun (Hanyang University, Korea) 

• Synthesis

– University of Utah

• XPS measurements

 ANL contributors

– Experiment: Z. Zhang, Z. Chen

– Theory: P. Redfern, H. Iddir, G. Ferguson

Collaborators
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 Understanding and prediction  of new additive materials from our 
database of candidate species based on screening of reduction 
potentials

– Focus will be on improved modeling of decomposition reaction 
pathways leading to SEI formation

– Improved solvation models – inclusion of explicit water molecules

– Collaboration with Grant Smith (Utah) to integrate high level 
quantum chemical studies with larger scale methods for modeling 
SEI formation mechanisms

– Characterization of SEI

 Synthesis of new additive materials based on theoretical predictions

 Testing of new additive materials

 Extend methods to shuttles for overcharge protection

Proposed Future Work
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 Improved quantum chemical model for the calculation of 
reduction potentials
– Screening of over 275 candidate materials

 Further screening based on initial decomposition pathways 
has identified 77 new promising candidates
– carbonates, oxalate salts, anhydrides, allyl- substituted 

species. 
 Experimental studies on new additives 

– improved performance
• LiDFOB, LiBOB
• LFTOP, LTOP 
• Allyl substituted rings species

 New insight into lithium alkyl formation from ethylene 
carbonate

Summary



Extra slides



- -
EC (anion 
closed)

0.0

∆G = 0.22 eV
∆G = 1.3 eV (neutral system)

Accomplishment: High level G4 theory calculation of ring 
opening of ethylene carbonate upon reduction

Previous calculations

 Balbueana et al JACS

 Vollmer et al JECS

 Smith et al, unpublished

-

∆G = -1.40 eV

EC (anion 
open)

 Reduction potential of EC is  1.52 eV to the open form

 Reaction barrier to open anion radical difficult  to calculate due to negative 
electron affinity of EC
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