

Electrode Construction and Analysis

<u>Gao Liu</u> and Vince Battaglia Lawrence Berkeley National Laboratory

DOE OVT Annual Merit Review Crystal City, VA May 20, 2009

es_16_battaglia

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Lawrence Berkeley National Laboratory

<u>Timeline</u>

Anode fabrication and analysis Start date: October 2007 End date: September 2010 ~50 % complete

Barriers

Inadequate energy density to meet the cost target

Inadequate cycle life

Inadequate calendar life

<u>Budget</u>

FY08 \$800 k (100% DOE) 1 Program Manager 1 Research Scientist 1 Visiting Scholar 2 Research Associates

FY09 \$1016 k (100% DOE)

1 Program Manager 1 Research Scientist 3 Research Associates 1 Post doctorate

Collaborators

Researchers

V. Srinivasan R. Kostecki A.M. Sastry

- D. Wheeler
- K. Zaghib
- P. Ross

Companies Bosch Lockheed Martin

Lockheed Martin Seeo Applied Materials Toda Hitachi Chemical Conoco Phillips Veeco

- Overall: To provide a fundamental understanding of the role of the inactive materials in the performance of electrodes.
- This year: *Focus on Anode*
 - Identify a replacement carbon for MCMB.
 - Measure the effect of different conductive additive fractions and binder fractions on anode cycleability.
 - Quantify the effect of vinylene carbonate on anode performance.
 - Develop electroactive binders for Si-based anodes.

Relevance to Vehicle Technologies Program

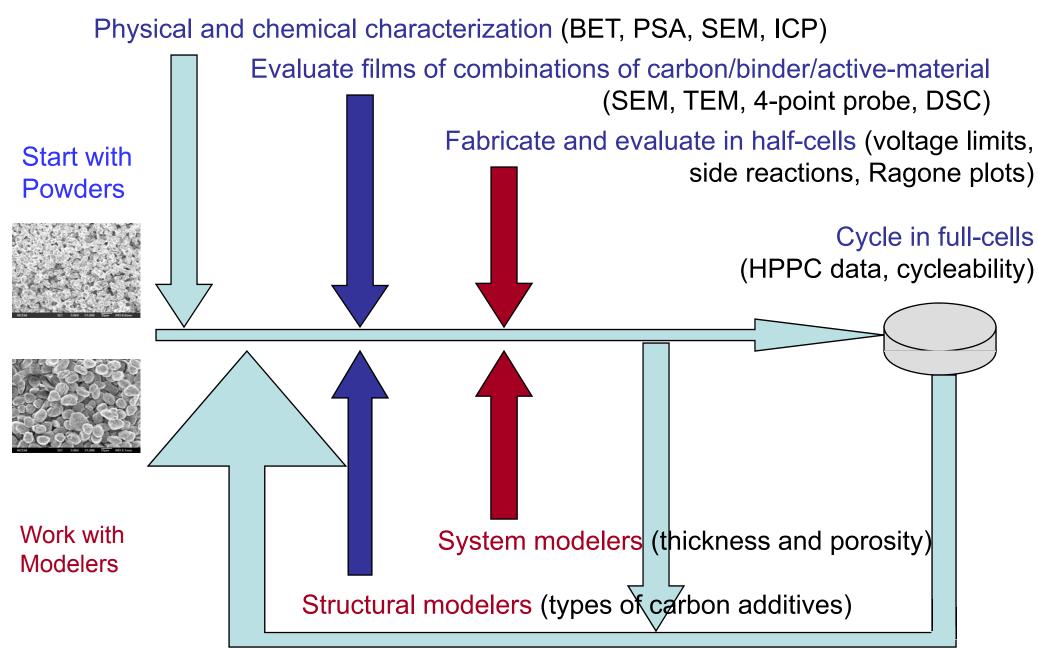
Success in this endeavor will accelerate the path to reaching the PHEV... specific energy target of 145 Wh/l cycle life target of 2500 cycles

2009 DOE Annual

> Merit Review

Milestones

FY2008

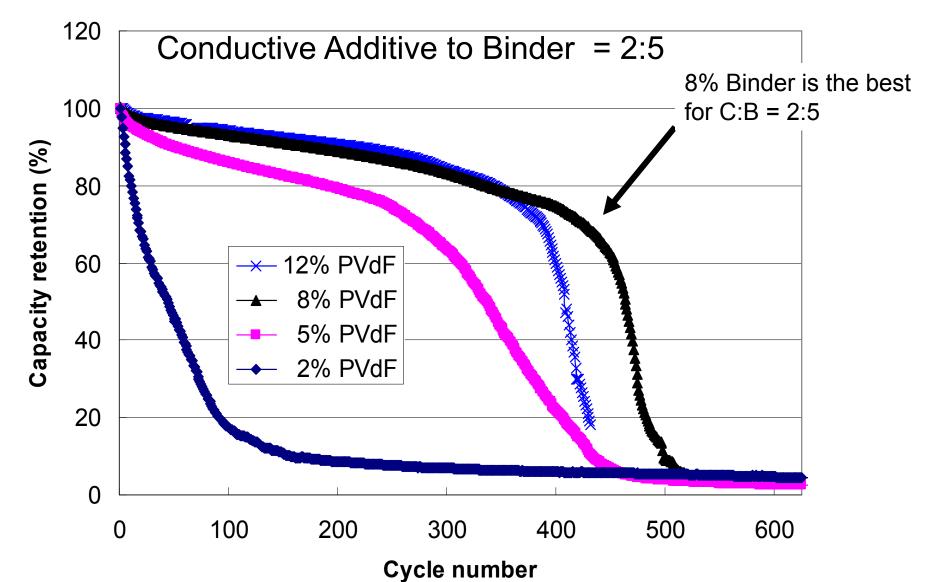

- Complete the electrode performance characterization of NCM-based cathodes for PHEV-40, (Jun. '08).
- Complete the electrode performance characterization of graphite based anodes for PHEV-40, (Sep. '08).
- Complete the chemical characterization of NCM, (Sep. '08).

FY2009

- Determine the reduction and oxidation potentials of VC against a Pt electrode (May '09).
- Select a new baseline graphite to replace MCMB (June '09).
- Distribute electrodes cycled to different cut-off voltages to other members of the BATT program (June '09).
- Construct several electrodes of Si-based active material with PVdF and test their performance, (January '09).
- Develop an new binder for Si-based anodes (Sept. '09).

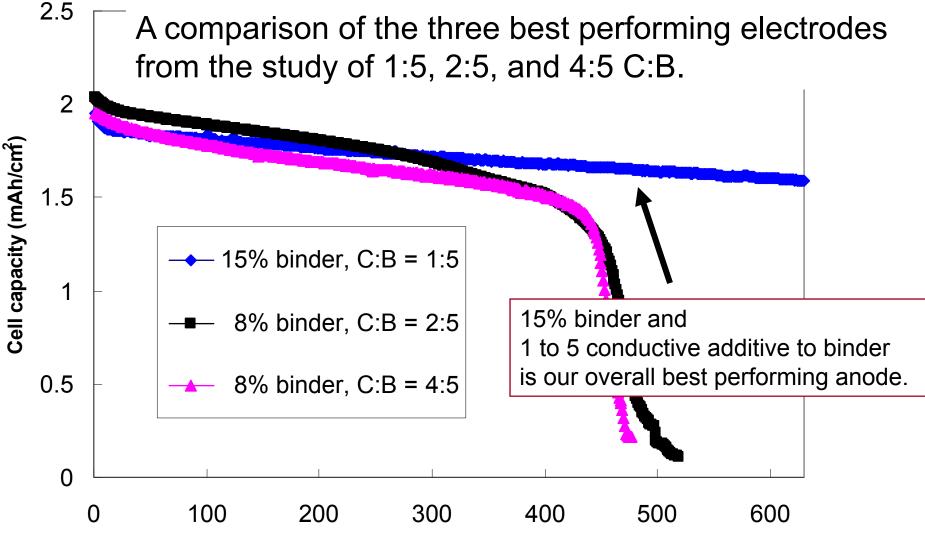
Approach

A bottom-up, comprehensive approach that combines experiments and modeling.


Lawrence Berkeley National Laboratory

There are four major areas of study that we are pursuing *via* our defined Approach:

- 1. Assessing the effects of different combinations of acetylene black / PVdF / MCMB on electrode performance.
- 2. Comparing the performance of electrodes designed for PHEV applications.
- 3. Assessing the effect VC has on the anode and the cathode performance.
- 4. Developing a new binder for Si-based electrodes.


Today I will focus on 1. and 2. and present <u>highlights</u> of 3. and 4.

Task 1 – Testing graphite with different amounts of binder and conductive additive

Anodes cycled against a cathode from the ABR program.

Task 1 – Testing graphite with different amounts of binder and conductive additive.

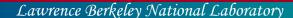
Cycle number

Anodes cycle against a cathode from the ABR program.

Lawrence Berkeley National Laboratory

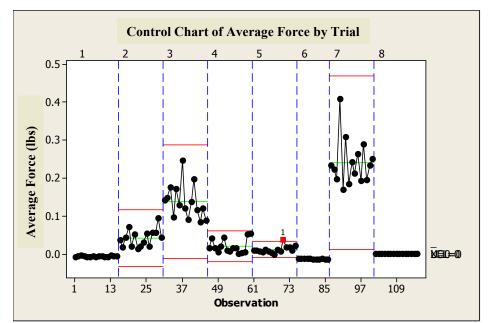
Simultaneously, we found delamination of the anode to be a major problem!

We investigated 7 parameters in a partial factorial, resolution III, eight-experiment (2⁷⁻⁴), test matrix where peel strength was measured


- 1. Binder type
- 2. Binder to carbon ratio
- 3. Binder fraction
- 4. Laminate thickness

- 5. Heating lamps
- 6. Calendering
- 7. Collector thickness

Level	x1: Binder Type	x2: Conductive Carbon to Binder Ratio (C:B)	x3: Binder Fraction	x4: Doctor Blade Height	x5: Heating Lamps	X6: Calendering	x7: Collector Thickness
_	KF1700	No Conductive Carbon	5% PVDF	55 micron	Off	20% Porosity	Thick Copper
+	KF1100	C:B = 3:5	12% PVDF	420 micron	On	Freestanding	Thin Copper

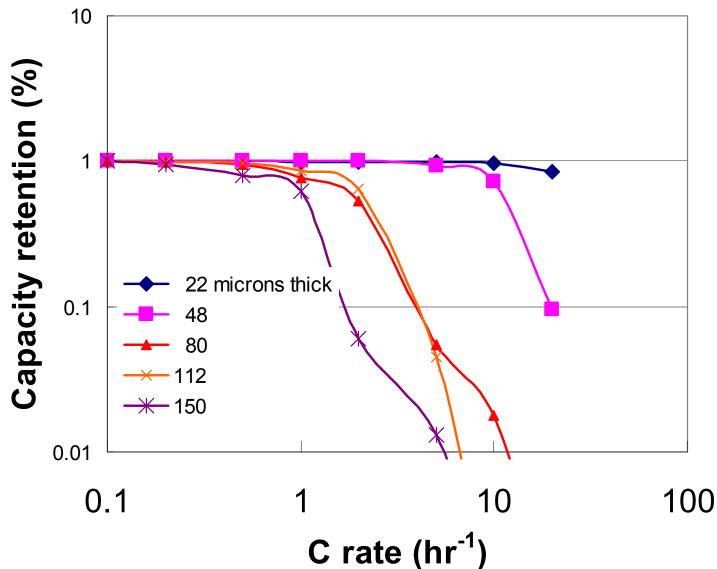

Technical Accomplishments / Progress / Results

2009 DOE Annual Merit Review

Run Order	1	2	3	4 12	5 13	6 23	7 123
8	-	-	-	+	+	+	-
6	+	-	-	-	-	+	+
2	-	+	-	-	+	-	+
4	+	+	-	+	-	-	-
7	-	-	+	+	-	-	+
3	+	-	+	-	+	-	-
5	-	+	+	-	-	+	-
1	+	+	+	+	+	+	+

Variables	Effect			
1. Binder Type	-0.03878			
2. C:B	-0.07463			
3. Binder Fraction	0.08367			
4. Thickness	0.01902			
5. Lamps	-0.02138			
6. Calendering	-0.11213			
7. Collector thickness	0.02342			

To improve lamination to the copper current collector:

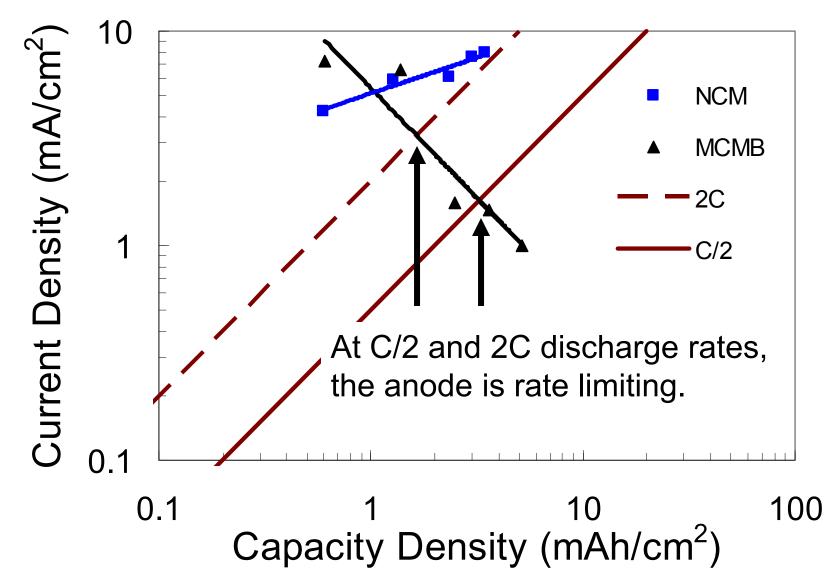

- More binder is good.
- Less conductive additive in the binder is good.
- Calendering may be important.

<u>Correlates very well with our best</u> <u>electrode design.</u>

Lawrence Berkeley National Laboratory

Task 2. Designing a Cell for a 40-Mile PHEV

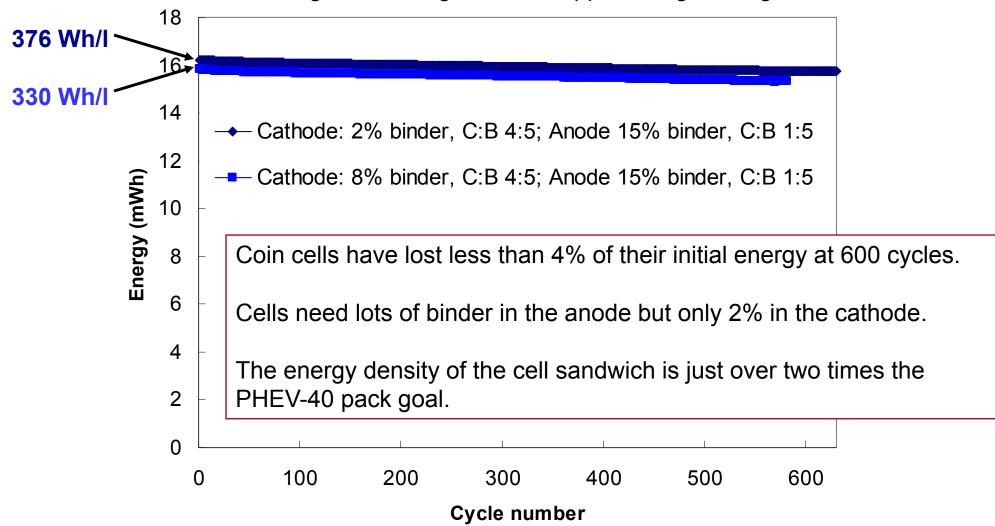
Effect of Laminate Thickness on Electrode Performance



Technical Accomplishments / Progress / Results

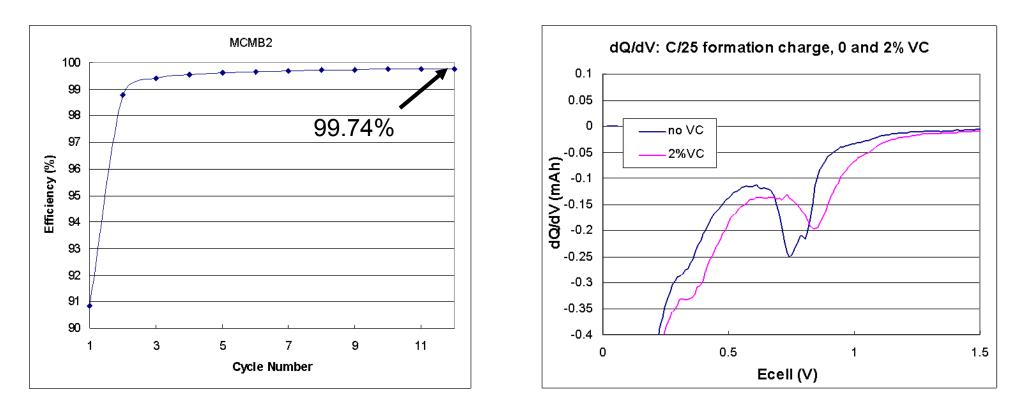
2009 DOE Annual Merit Review

Lawrence Berkeley National Laboratory


The current at which an electrode of a given capacity begins to show mass transfer resistance.

Lawrence Berkeley National Laboratory

Task 2 – Next iteration: Look at cycling performance of our <u>cathodes</u> against our best anode where <u>both</u> are designed for PHEV 40-mile systems.

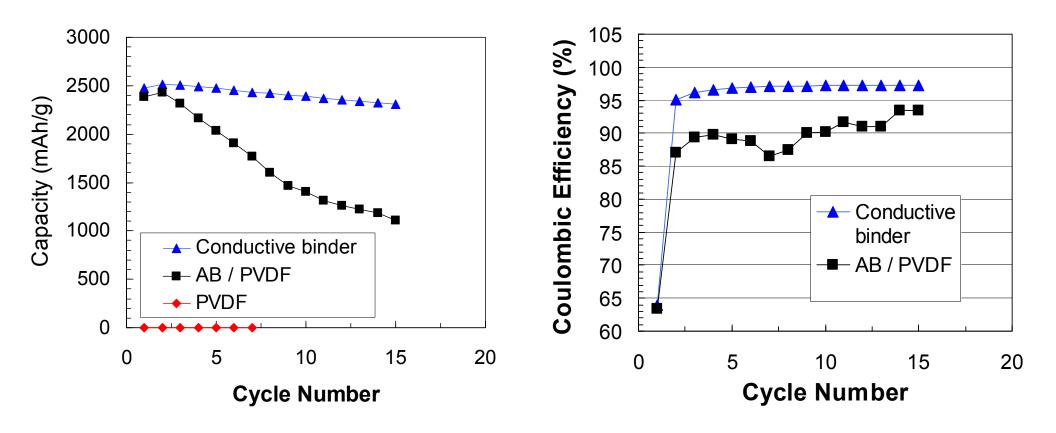

Constant <u>power</u> cycles to 70% of cell's initial full discharge capacity, P/2 discharge, P/4 charge, with an upper charge voltage of 4.3 V

Energy density calculations include ½ of curr. coll., electrodes, and separator.

Lawrence Berkeley National Laboratory

• Task 3 – Effect of VC on coulombic efficiency.

To get to 2500 cycles with just 20% capacity loss, we need coulombic efficiencies of


 $(1-0.2) = \eta^{2500}$ or $\eta = 99.991\%$

We are investigating different formation scenarios with VC as an additive with the intent to improve the coulombic efficiency.

es_16_battaglia

Lawrence Berkeley National Laboratory

Task 4 – A new conductive binder for Si-metal anode particles.

Preliminary results obtained in the last three months.

Future Work

- 1. Anode development
 - 1. Assess two more carbons and recommend a new baseline carbon for the BATT program. June '09 Milestone
 - 2. Assess the performance of graphite anodes made with SBR and CMC binders.
- 2. PHEV study
 - 1. Investigate the effects of constant power cycling versus constant current cycling
 - 2. Look at effects of dynamic stress testing
 - 3. Build sealed cells with a reference electrode
 - 4. Investigate upper cut-off voltage on cycleability. <u>June '09 Milestone</u>
 - 5. Evaluate potential of new materials developed in the BATT program to meet PHEV targets.
- 3. Additive study
 - 1. Determine oxidation and reduction potentials of VC. <u>May '09 Milestone</u>
 - 2. Develop a list of formation processes for VC and determine which leads to improved coulombic efficiency
 - 1. Initial charge rate
 - 2. Intermittent voltage holds
 - 3. Test other additives
- 4. Binder development
 - 1. Develop additional formulations to improve cycleability of Si. September '09 Milestone
 - 1. Enhanced flexibility
 - 2. Improved particle adhesion

Other:

Sensitivity analysis of the different processing steps on electrode performance

- Order and weight ratio by which materials are added to the slurry.
- Slurry viscosity and doctor blade speed.
- Rate of calendering
- Calendering temperature
- Electrode drying temperature and duration

Summary

Key take-away points

- We are making cells that last several months and cycle hundreds of cycles. This provides us an excellent platform for studying
 - Effects of electrode processing on cell performance and cycle life
 - Effects of the non-active-materials on cycle life
 - New active materials
 - Additives
 - Long term affects of upper voltage cut-off limits
- Incorporating design of experiments into our fabrication methodology.
- We have developed a binder that is showing great promise and hope to improve upon its cycleability.
 - This will not necessarily make Si a viable electrode as there are still unresolved issues such as
 - First cycle irreversible capacity loss.
 - Round-trip coulombic inefficiency
 - High polarization during charge and discharge.