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Overview

Timeline
 Start: October 2008
 Finish: September 2014
 ~25% Complete

Budget
 Total project funding

– 100% DOE
 FY2009: $400K
 FY2010: $400K

Barriers
 Development of a safe cost-effective PHEV 

battery with a 40 mile all electric range 
that meets or exceeds all performance 
goals
– Interpreting complex cell 

electrochemical phenomena
– Identification of cell degradation 

mechanisms
Partners (Collaborators)

 Kevin Gallagher, Argonne
 Daniel Abraham, Argonne
 Sun-Ho Kang, Argonne
 Andrew Jansen, Argonne
 Wenquan Lu, Argonne
 Kevin Gering, INL
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Objectives, Milestones, and Approach
 The objective of this work is to correlate analytical diagnostic results with 

the electrochemical performance of advanced lithium-ion battery 
technologies for PHEV applications

– Link experimental efforts through electrochemical modeling studies 

– Identify performance limitations and aging mechanisms

 Milestones for this year:

– Complete development of two phase active material model (completed)

– Initiate development of capacity loss model (completed)

– Complete development of an efficient parameter fitting method (mostly 
completed)

 Approach for electrochemical modeling activities is to build on earlier 
successful characterization and modeling studies in extending efforts to 
new PHEV technologies

– Expand and improve data base and modeling capabilities
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Major Accomplishments and Technical Progress
 Further development and evaluation of phase transition lithium diffusion transport 

model for two phase electrode active materials (e.g. LiC6, LiFePO4, LiMn2O4, Li4Ti5O12)

– Model simulations indicate the coexistence of three phases (i.e. Stage 1, Stage 2, and 
Stage 3) in graphitic negative electrode (MCMB, Gen 3) during normal cell operation

– Model was modified to account for coexistence of three phases and changes were 
integrated into full cell model

– Initiated study of second graphite negative electrode (Mag 10, PHEV baseline)

 Initiated development of capacity loss degradation model

– Conducted literature review and considered possible phenomena

– SEI model developed to examine growth mechanisms

 Supported other development efforts in program

– Integrated improved electrode impedance and limiting current estimates into Paul 
Nelson’s Battery Design Model

– Developed spherical geometry four probe conductivity model for single particle 
conductivity measurements

– Initiated modeling studies on binder-carbon-free electrodes to examine primary-
secondary active particle microstructure and interactions
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Description of Electrochemical Model
 Phenomenological model developed for AC impedance and DC studies using 

same constituent equations and parameters
 Combines thermodynamic, kinetic,  and interfacial effects with continuum 

based transport equations
 Complex active material / electrolyte interfacial structure

– Film on active particles acts as an electrolyte layer with restricted 
diffusion and migration of lithium ions

– Surface layer of active particle inhibits the diffusion of lithium into the 
bulk active material

– Electrochemical reaction and double layer capacitance at film/layer 
interface

– Particle contact resistance and film capacitance
 Volume averaged transport equations account for the composite electrode 

geometry
 Lithium diffusion in active particles and multiple particle fractions
 The system of partial differential equations are solved numerically
 Model parameters determined independently (e.g. electrolyte parameters are 

supplied by Kevin Gering’s Advanced Electrolyte Model)
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Electrochemical Model Effectively Used to Examine 
Interfacial and Diffusional Phenomena in Intercalation 
Positive Electrode Active Materials
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Parallel Development for Graphitic Negative Electrode 
was not Near as Productive
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 Analysis indicated that potential effects 
associated with diffusion of lithium in the 
graphite was not being accurately described 
(i.e. treating the lithium diffusion in graphite as 
a single phase process was not adequate)
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Electrochemical Model Development

Develop Model
for Phase Change
Active Materials

Integrate Phase
Change Model Into
Full Cell DC Model

Examine Full Cell
Integrated Phase
Change Model

Develop SEI Model
To Account for
Degradation
Mechanisms

Integrate SEI
Model Into
Full Cell DC Model

Develop General
Full Cell AC and DC 
Models

Full Cell AC and DC Models with Intercalation
Single Phase Active Electrode Materials and
Complex SEI Microstructure

Darker Blue Shade Indicates More Mature Effort

Examine Full Cell
Integrated SEI
Model
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Room Temperature GITT Experiments
(0.2 mA/cm2 for 10 min)
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Galvanic Intermittent Titration Technique (GITT) Studies 
on Graphite Negative Electrode Used to Examine Phase 
Transition and Lithium Diffusion

 Staged lithium intercalation into graphite well established in literature with 
open circuit voltage (OCV) curve showing single and two phase regions

 Polarization diffusional potential rise similar in both single and two phase 
regions despite significant differences in slope of OCV curve

 Very slow relaxation of potential apparent in two phase region
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Phase Growth Model Based on Avrami Equation Adopted 
after Alternative Phase Transition Models Examined 
Active Material Particle

Cross-Section
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Active Material
Surface
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Second Phase
Growth Following
Avrami Equation
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 Lithium diffusion in both phases of active material and equilibrium at interfaces

– Volume averaged transport equations

 Well known Avrami phase growth equation with a lithium concentration 
dependent rate constant is used to describe the phase transition

 Avrami, equilibrium, and diffusion equations integrated into full 
electrochemical cell model

LiC12 / LiC32 Two Phase Region Room Temperature GITT 
Experiment (0.2 mA/cm2 for 10 min)
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Phase Growth Model Modified to Allow for Coexistence 
of Three Phases and Changes Integrated into Full Cell 
Electrochemical Model

 OCV curve used to establish stable single phase regions. For simplicity, Stages greater 
than Stage 2 treated as Stage 3.

 As the cell is discharged, the lithium concentration in each phase drops
 When the lithium concentrations in each phase falls below its stability limit the lower 

concentration phase begins to form following the Avrami equation
 Early modeling studies with two phase model on the graphite negative electrode 

indicated that the lithium concentration in both phases could drop below their stability 
limit

Li Concentration Distribution in Graphite Particle
1000s into C/1 Discharge
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Impact of Slow Phase Transition Rate Constant on Stage 
Formation During Discharge:
Simulation of Graphite Negative Active Material

 Coexistence of all three stages indicates that equilibrium is not attained even 
at a C/50 rate

 Three phase width increases with discharge rate and Stage 2 maximum 
decreases

Graphite Particle during C/50 Discharge
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Negative Electrode Current and Phase Distributions 
Relatively Uniform During a C/1 Discharge

Negative Electrode Phase Change
During C/1 Discharge
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2000s into C/1 Discharge
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Graphite Negative Electrode Phase Transition Diffusion 
Model Accounts for Observed Hysteresis

Mag-10 Graphite (Gen 2) Electrode vs Li
Room Temperature C/50 Discharge with 0.5h Interrupts 
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 Faster lithium diffusion allows for high lithium transport rates (i.e. electrode 
able to support high currents)

 The slow phase transition rate constant accounts for the electrode’s apparent 
sluggishness to reach equilibrium

 Slow cycling hysteresis 
may be useful technique 
to estimate phase 
transition rate constant

MCMB Graphite (Gen 3) Electrode
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Future Plans

 Advance development of electrochemical model for two phase active 
materials focusing on impedance effects

– Develop AC impedance two phase model and integrate SEI model

– Continue examination of baseline PHEV negative electrode

 Continue development of PHEV focused electrochemical models

– Advance SEI growth model to examine capacity loss degradation 
mechanisms

– Alternative materials, higher electrode loadings, and different 
testing protocols

 Continue support of other ABR projects

 Milestones for next year

– Initiate development of AC impedance two phase model 

– Integrate SEI growth model into full cell model
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Summary
 The objective of this work is to correlate analytical diagnostic results with 

the electrochemical performance of advanced lithium-ion battery 
technologies for PHEV applications

 Approach for electrochemical modeling activities is to build on earlier 
successful characterization and modeling studies in extending efforts to 
new PHEV technologies

 Technical Accomplishments

– Further development and evaluation of phase transition lithium 
diffusion transport model for two phase electrode active materials

– Initiated development of capacity loss degradation model

– Supported other development efforts in program

 Future plans include development of a full cell AC impedance two phase 
active material model and advance an SEI growth model to examine 
capacity loss degradation mechanisms, as well as continued support of 
other ABR projects
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