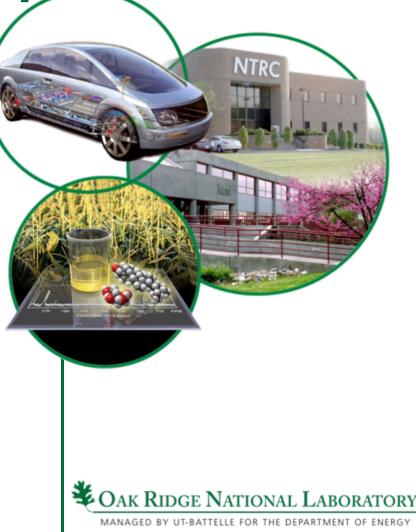
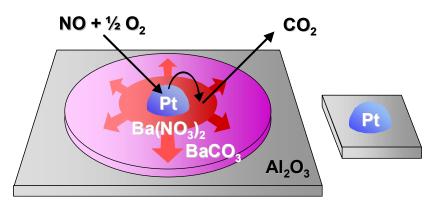
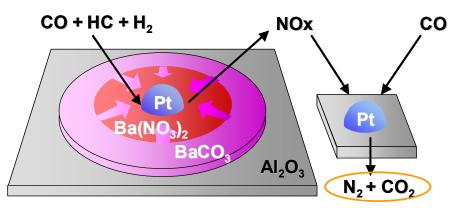
Effect of Thermal Aging on NO oxidation and NOx storage in a Fully-Formulated Lean NOx Trap


Nathan Ottinger and Ke Nguyen University of Tennessee

Bruce Bunting, Jane Howe, and <u>Todd J. Toops</u>, Oak Ridge National Laboratory

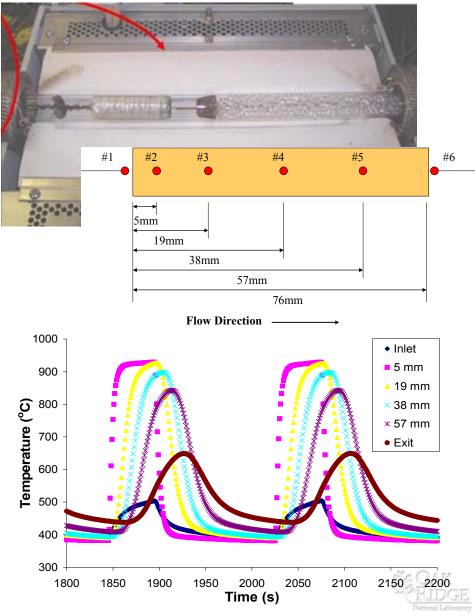
August 6, 2009

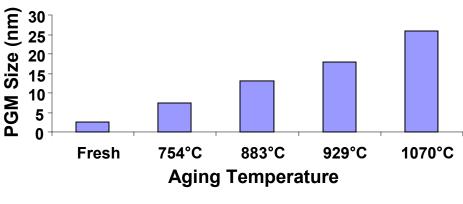

15th DEER Dearborn, Michigan

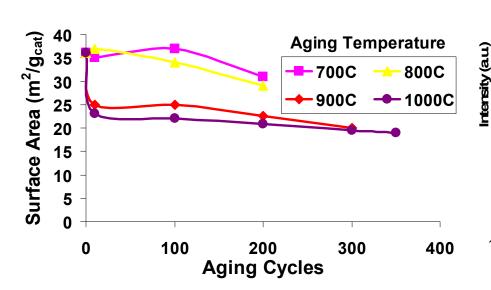


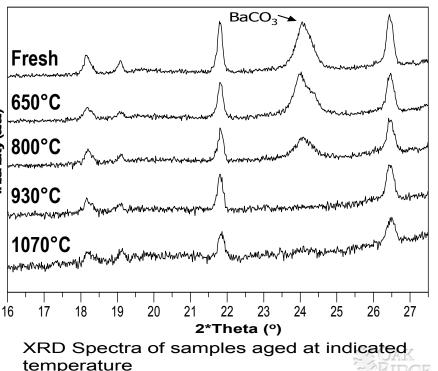
LNT behavior comprised of three main steps: oxidation, storage, and reduction

- Modeling efforts must capture the independent reaction steps
- Aging effects these steps...differently
- Optimizing injection strategies relies on understanding the state of LNT as a function of age
 - If LNT optimized for end of life performance near term fuel penalties will be higher than necessary
 - If LNT optimized for fresh performance, will fail emissions during use



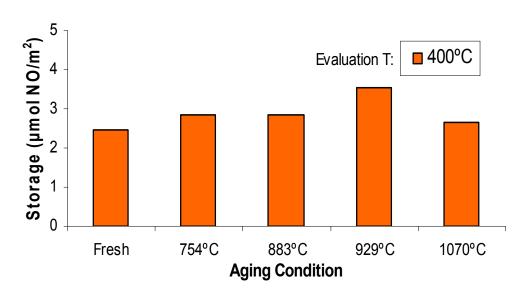

Thermally-aged catalysts generated using bench-generated exotherms

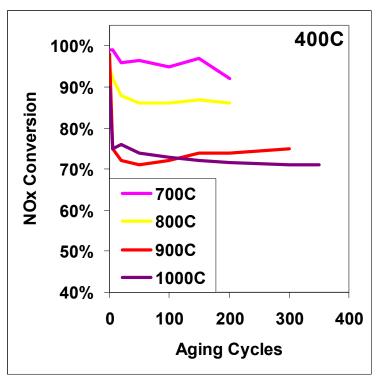

- Effort began as a Rapid Aging Protocol development project
- Temperatures studied
 - 700, 800, 900, 1000°C
 - Up to 350 thermal cycles
- Study generated LNTs with wide range of aging properties
 - Pt-Pd-Rh/Ba/γ-Al₂O₃ plus other additives
 - Umicore samples (formerly Delphi)



Thermal aging has clear effect on material properties

- Pt group metals (PGM) increase in size
 - therefore, surface metal decreases
- Phase changes as depicted by XRD
 - Ba-phase appears to be dispersing
- Total surface area of support + storage material decreases





4 Managed by UT-Battelle for the U.S. Department of Energy

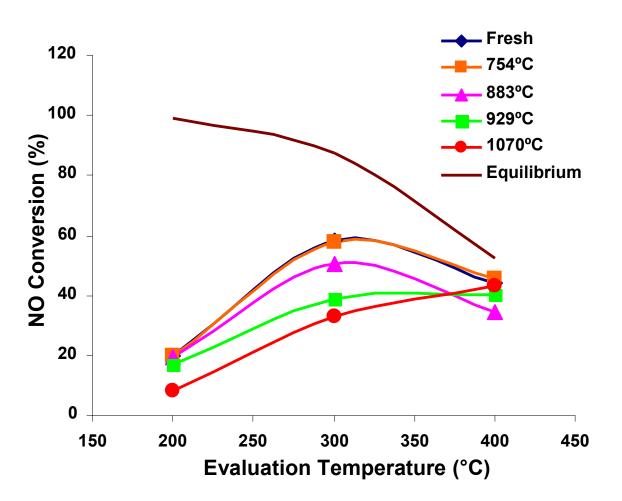
Thermal aging affects the chemical reactions of an LNT differently

- Overall performance decreases with aging
- However, not all LNT functionality decreases
- What materials effects change the functionality?

Effects of Aging on LNT functionality:

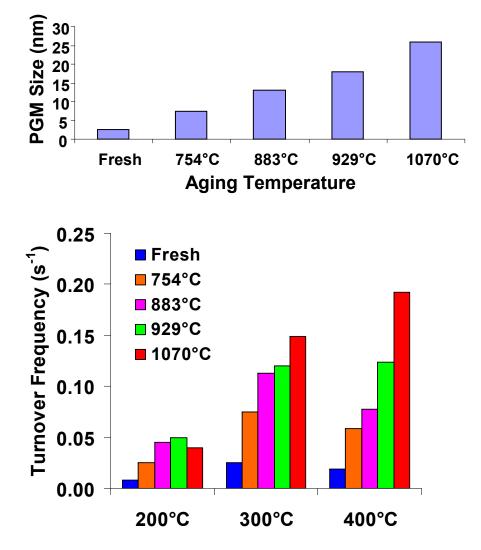
NO Oxidation

NO_x Storage

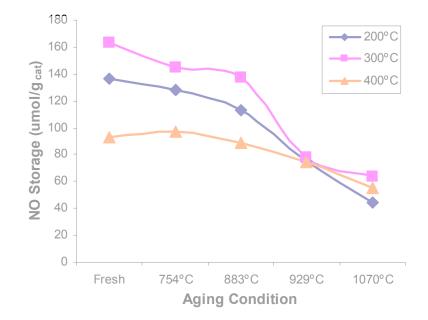

NO_x Reduction

6 Managed by UT-Battelle for the U.S. Department of Energy

Overall NO oxidation rate decreases


- NO oxidation measured after measuring total NOx storage capacity
- NO oxidation at 200 and 300°C decreases with aging temperature
- Approximately constant at 400°C
 - Equilibrium limited

Although NO oxidation decreases, the effectiveness of the PGM increases

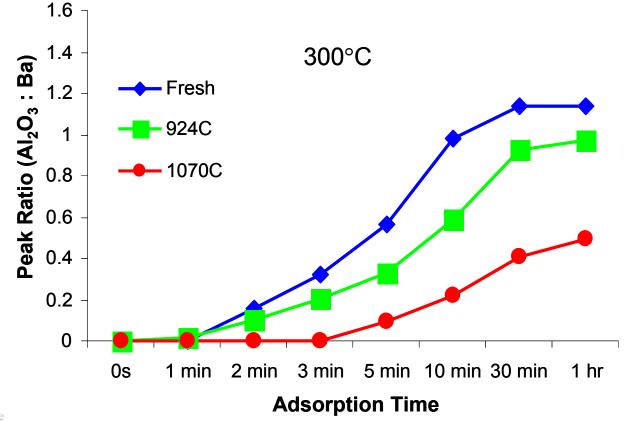

- Ten-fold increase in average PGM size after aging at 1000°C
- NO conversion *per PGM_s* increases at all evaluation temperatures
 - 0.02 to 0.2 s⁻¹ at 400°C
 - mol NO/mol PGM_s/s → s⁻¹ (TOF)
 - TOF : turnover frequency
- Qualitatively illustrated by Olsson et al.
 - L. Olsson, E. Fridell, Journal of Catalysis 210 (2002) 340.

NOx storage capacity effects

- Maximum NO_x storage capacity at 300°C
- Storage decreases per gram of catalyst at higher aging temperatures

Nitrates adsorb on Al₂O₃- and Ba-phases; Fewer Al₂O₃ nitrates after aging at 900°C

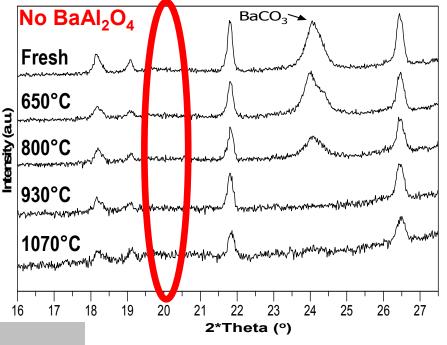
- Fresh sample: Significant fraction of nitrates stored on Al₂O₃; ~25% by peak area
- Aging to 900°C reduces Al₂O₃ peak height/area
 - corresponds to reduction in exposed Al₂O₃ surface
- Ba nitrates not as affected by aging
 - Ba could be re-dispersing and covering γ -Al₂O₃

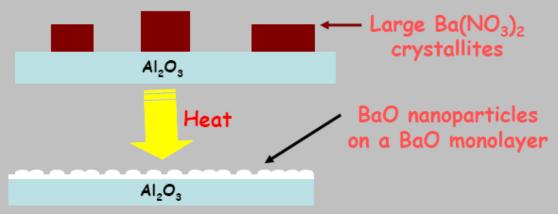

Peak Assignments (cm⁻¹) 1550 1465 1412 300°C 1545 1430 1320 $\gamma - Al_2O_3 - NO_3$ • 1250, 1412, 1465, and 1550 10.02 1250 ♦ 0.02 $Ba(NO_3)_2$ • 1320 and 1430 1214 $Ba(NO_2)_2$ 1215 5 m Flow Conditions 3 m 2 m • 300 ppm NO, 10% O_2 , and Ar bal. 1 m 10 Managed by UT-Battelle 1800 1600 1400 1000 1200 1800 1200 1000 1600 1400

Fresh

Aged at 900° C

Ratio of peak heights illustrates decrease in Al₂O₃ nitrates


- Peak height ratios of Al₂O₃ nitrate and Ba(NO₃)₂ peaks
 - 1550 and 1430 cm⁻¹, respectively
- Decrease in peak ratio above 900°C



XRD and DRIFTS results suggest Ba dispersion occurring on aged samples

- 200 and 300°C
 - Reductions in NO_x storage when aging at T > 900°C largely due to loss of Al₂O₃ nitrates
 - Possible Ba dispersion
 - Ba-nitrates much less affected by aging

- Evidence of this previously reported on model catalyst systems
 - Peden et al. CLEERS Workshop #9, 2005

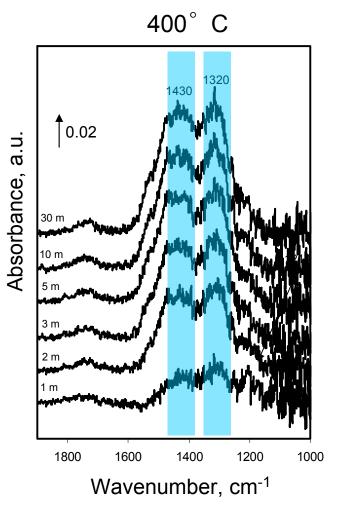
12 Managed by UT-Battelle for the U.S. Department of Energy

Al₂O₃ nitrates not stable at 400°C

- No formation of nitrates on Al₂O₃
- LNT is saturated after 30 min of NO exposure
- 400°C
 - Storage affected only by Ba sites

Peak Assignments (cm⁻¹)

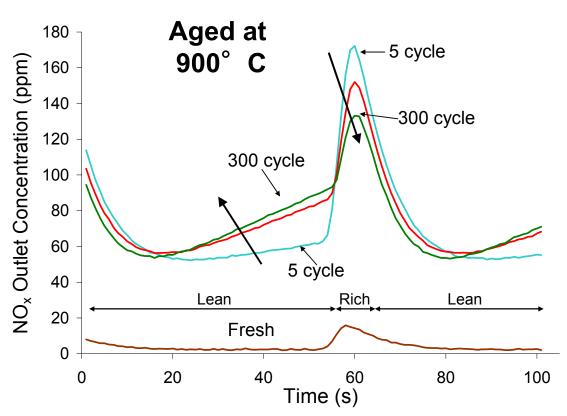
γ-Al₂O₃-NO₃ • 1250, 1412, 1465, and 1550


Ba(NO₃)₂ • 1320 and 1430

Ba(NO₂)₂ • 1215

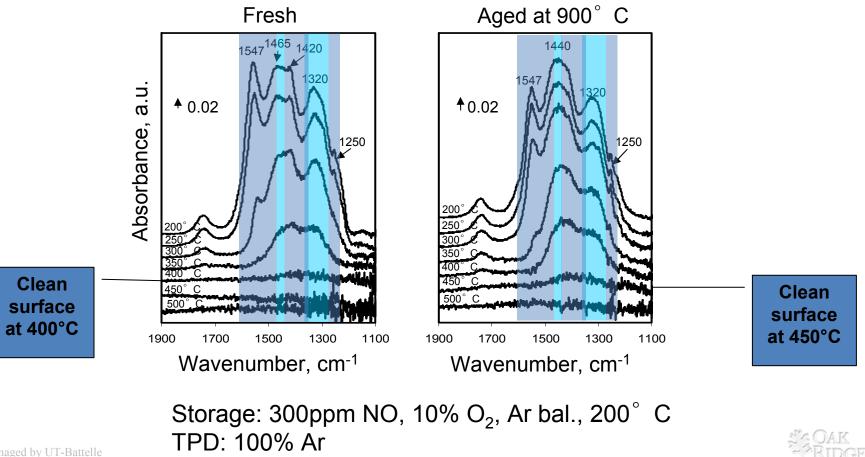
• 1215

Flow Conditions

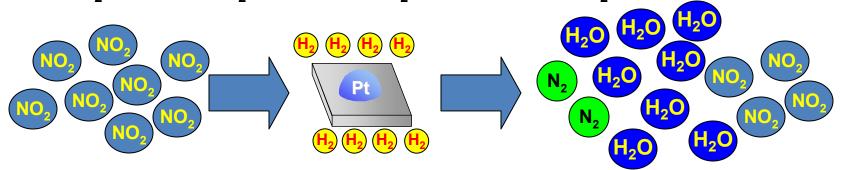

• 300 ppm NO, 10% O2, and Ar bal

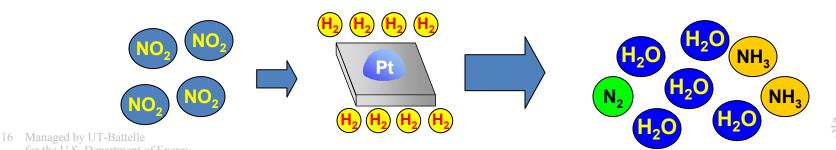
Rich phase NO_x release (puff) decreases with aging when evaluating at 400°C

- Storage Phase (60 seconds)
 - NO_x slip increases with aging temperature and number of aging cycles
 - Capacity decreases
- Reduction Phase (5 seconds)
 - NO_x "puff" decreases with increasing # of aging cycles


GHSV: 30,000 hr⁻¹ Lean (60s): 300ppm NO, 5% CO₂, 5% H₂O, 10% O₂, N₂ bal Rich (5s): 300ppm NO, 5% CO₂, 5% H₂O, 1.13% CO, .68% H₂, N₂ bal

Nitrates more stable after aging


- Fresh sample desorbs nitrates below 400°C
- Aging increases stability of nitrates by ~ 50°C
 - Suggests Ba redispersion influences Ba-nitrate stability
 - Possible Ba-support interaction


Stable nitrates would also release slower under rich conditions

- The higher the nitrate stability the slower the release of NOx and the more likely that it will react with reductants
 - Leading to smaller NO_x puff
- Depiction of release scenarios and their impact on selectivity:

Fast NO₂ release...NO₂ overwhelms H₂ at Pt surface...NO₂ released in exhaust

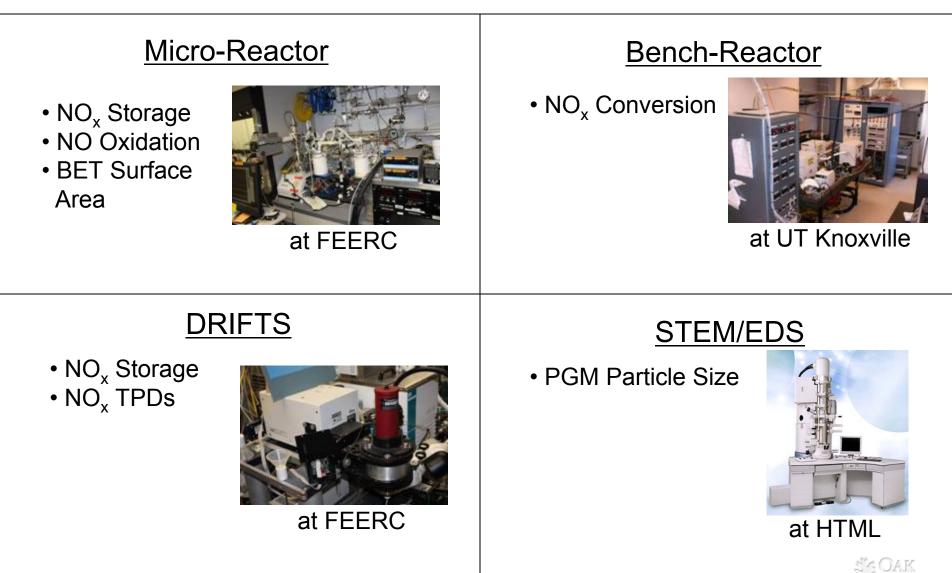
Slow NO₂ release...H₂ overwhelms NO₂ at Pt surface...NH₃ formation possible

Conclusions

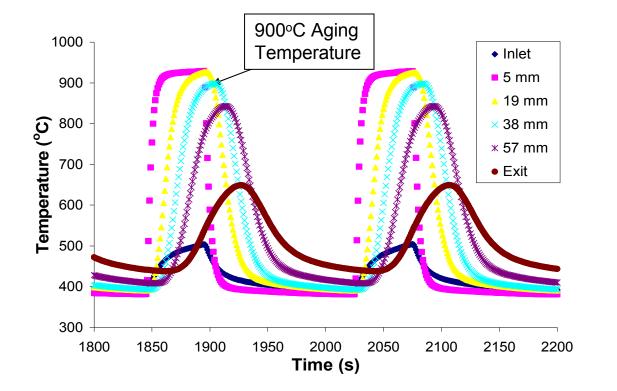
- Thermal aging of LNT has numerous material and chemical effects
 - Generally, all reaction rates decrease on a mass basis
 - Efficiency of catalysts improve for some steps
- Aging results in improved nitrate stability
 - Effects performance and NH₃ formation
- Evidence of Ba re-dispersion observed after thermal aging
 Al₂O₃ contribution to NOx storage and reduction minimized

Acknowledgements

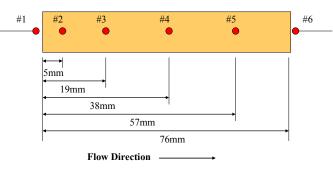
- Funding provided by U.S. Department of Energy (DOE) Vehicle Technologies Program – Kevin Stork
- LNT catalysts supplied by Umicore (formerly Delphi)
- STEM/EDS performed as a user center proposal at ORNL's High Temperature Materials Laboratory (HTML)



ADDITIONAL SLIDES



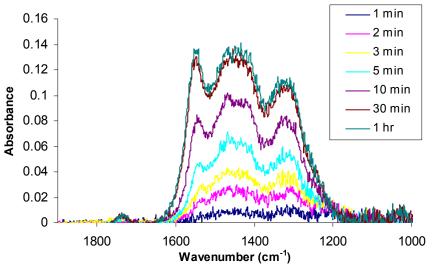
Experimental Apparatus



20 Managed by UT-Battelle for the U.S. Department of Energy

Thermal-Aging with Exotherm in a Furnace

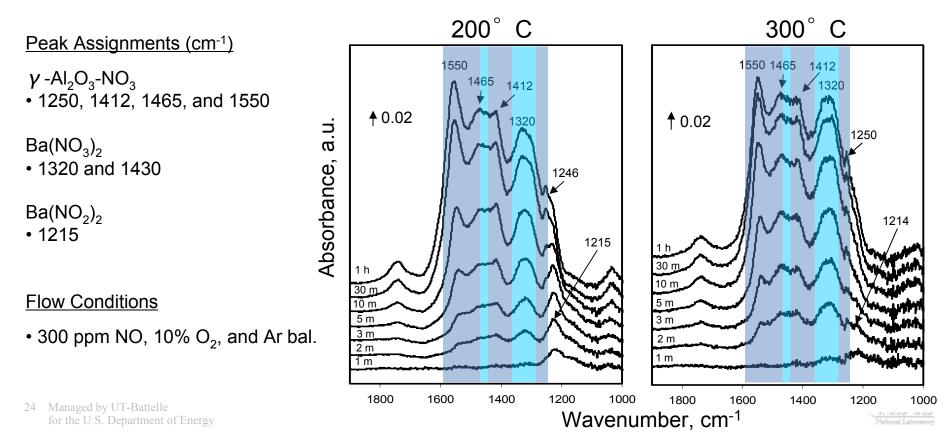
- Low Temperature Ba-only LNT (fully-formulated)
- The center of the catalyst reaches a nominal aging temperature of ~900°C
- The front section of the catalyst experiences higher aging temperature



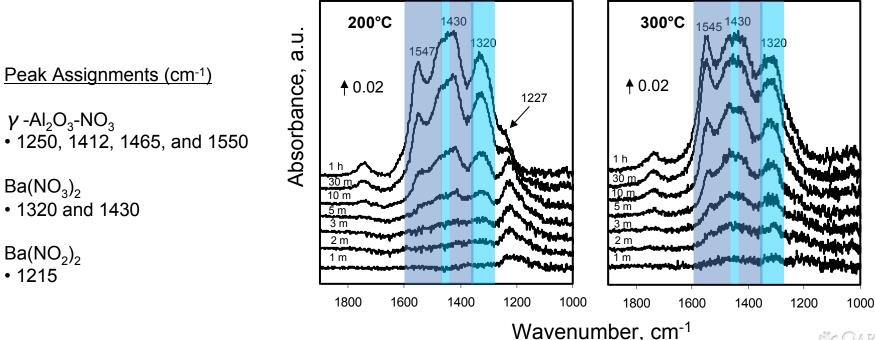
	Lean (130s)	Rich (50s)
NO _x	300 ppm	300 ppm
CO ₂	5%	5.00%
CO	0	5.10%
H ₂	0	3.25%
O ₂	11%	4.00%
H ₂ 0	4.2%	4.20%
N ₂	balance	balance

DRIFTS Experimental Setup

- NO_x Storage
 - Pretreatment at 500°C in 1% H₂, Ar bal. for 30 min
 - Take background scan in 10% O₂, and Ar bal. at storage temperature
 - Store NO_x with 300 ppm NO, 10% O_2 , Ar bal.
- NO_x TPDs
 - Pretreatment at 500°C in 1% H₂, Ar bal. for 30 min
 - Take background scans while cooling from 500 to 200°C in 10% O₂, Ar bal.
 - Exposure to 300 ppm NO, 10% O₂, Ar bal. at 200°C for 1 hr
 - $\quad \text{TPD in Ar} \\$

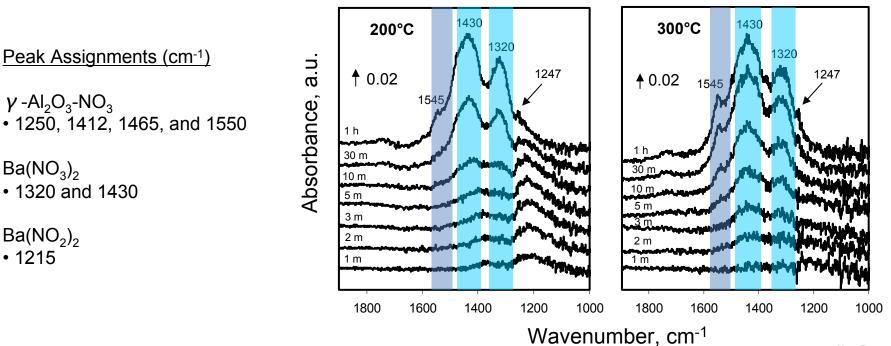

DRIFTS Peak Assignments

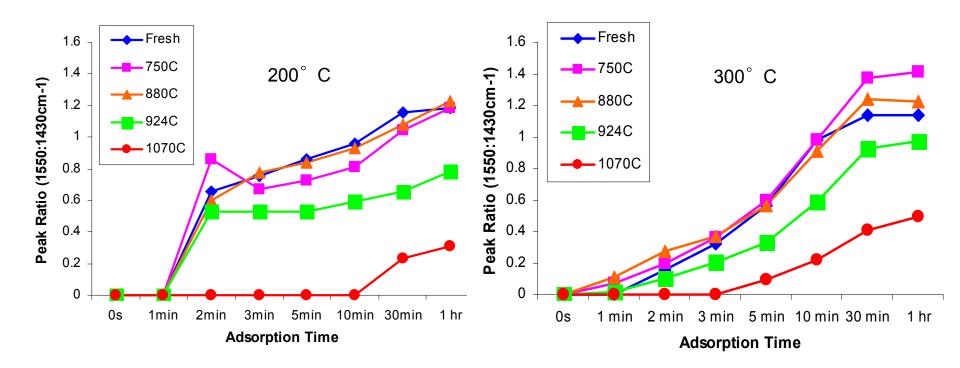
- 1220 cm⁻¹ Ba(NO₂)₂
 - D. H. Kim, J. H. Kwak, J. Szanyi, S. D. Burton, C. H.F. Peden, Appl. Catal. B: Environ. 72 (2007) 233.
 - J. Yaying, T. J. Toops, J. A. Pihl, M. Crocker, Submitted to Applied Catal. B.
- 1430 and 1320 cm⁻¹ Ba(NO₃)₂
 - Z. Liu, J. A. Anderson, J. Catal. 224 (2004) 18.
 - F. Prinetto, G. Ghiotti, I. Nova, L. Lietti, E. Tronconi, P. Forzatti, J. Phys. Chem. 105 (2001) 12732.
 - J. Yaying, T. J. Toops, J. A. Pihl, M. Crocker, Submitted to Applied Catal. B.
 - Ch. Sedlmair, K. Seshan, A. Jentys, J. A. Lercher, J. Catal. 214 (2003) 308.
- 1550, 1465, 1412, and 1250 cm⁻¹ γ -Al₂O₃ NO₃
 - Z. Liu, J. A. Anderson, J. Catal. 224 (2004) 18.
 - T. J. Toops, D. B. Smith, W. P. Partridge, Appl. Catal. B: Environ. 58 (2005) 245.
 - J. Yaying, T. J. Toops, J. A. Pihl, M. Crocker, Submitted to Applied Catal. B.
 - A. L. Goodman, T. M. Miller, V. H. Grassian, J. Vac. Sci. Technol. A 16 (1998) 2585.


NO_x Storage DRIFTS Spectra from Fresh LNTs

- Spectra at 200 and 300°C are similar
 - Large portion of nitrates stored on γ -Al₂O₃; approximately 25% by peak area
 - Ba nitrites form first, but peak is less intense at 300°C

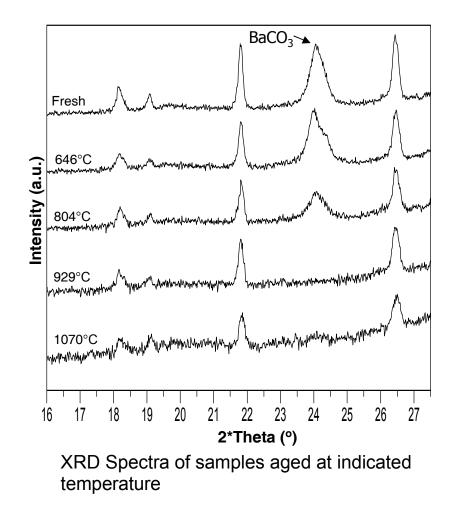
Fewer Al₂O₃ Nitrates After Aging at 900°C


- Reduction in γ-Al₂O₃ peak height/area corresponds to reduction in γ-Al₂O₃ surface area or Ba redispersion over γ-Al₂O₃
- Ba sites appear not to be as affected by aging
 - Consistent with 200°C NO_x storage
 - Ba could be redispersing and covering γ -Al₂O₃


Further Reduction in Al₂O₃ Nitrates After 1000°C Aging

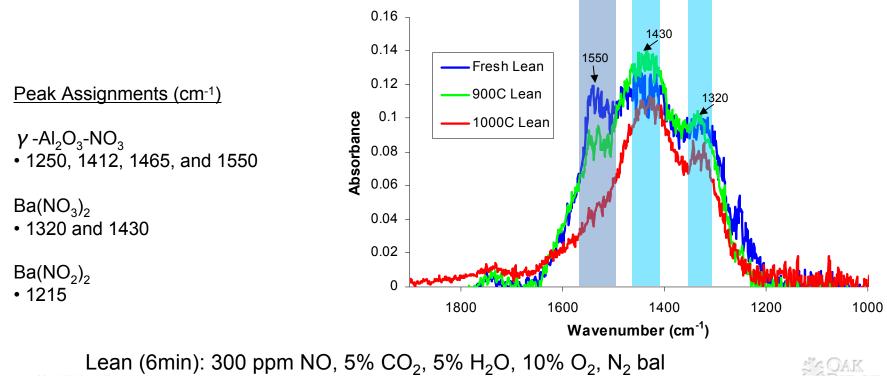
- Almost complete loss of γ-Al₂O₃ NO_x storage sites
- Ba sites appear not to be as affected by aging
 - Ba(NO₃)₂ peak at 1430 cm⁻¹ is now clearly visible

Effect of Aging on Al₂O₃ Nitrates Not Seen at 700 or 800°C



- Maximum peak height ratios of Al₂O₃ nitrate and Ba(NO₃)₂ peaks at 1550 and 1430 cm⁻¹, respectively
- Decrease in peak ratio begins when aging above 880°C

XRD Provides Further Evidence of Ba Redispersion

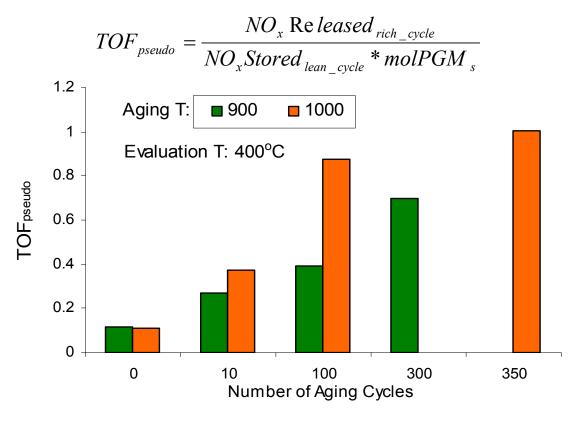

- Disappearance of BaCO₃ peaks at 929° C
 - No evidence of formation of other Ba phases, e.g., BaAl₂O₄
- Elemental Ba still present in unidentified phase (EPMA)
- BaCO₃ transition minimally affects NO_x conversion

Introduction of H₂O and CO₂ Marginally Reduces Al₂O₃ NO₃ Formation

- Switching exp's with H₂O and CO₂ show similar trends to SS NO_x adsorption
 - Al₂O₃ nitrates are most affected by aging

²⁹ Managed by UT-BRich (30s): 300 ppm NO, 5% CO₂, 5% H₂O, 1.13% CO, .68% H₂, N₂ bal

Calculating an Unbiased Turnover Frequency is Complicated by Cycling


• Normalized to NO_x stored in previous lean cycle to account for dependence on surface coverage of rich NO_x release

$$TOF_{pseudo} = \frac{NO_{x} \text{Re} \text{leased}_{\text{rich}_cycle}}{NO_{x} \text{Stored}_{\text{lean}_cycle}} * \text{molPGM}_{s}$$

30 Managed by UT-Battelle for the U.S. Department of Energ

Aging improves reduction efficiency

- NO_x that is released is reduced more efficiently after aging
- This is observed even though the PGM surface is decreasing
- A pseudo turnover frequency (TOF) illustrates this relationship


```
GHSV: 30,000 hr<sup>-1</sup>
```

31 Managed by UT-Battelle for the U.S. Department of Energ Lean (60s): 300 ppm NO, 5% CO₂, 5% H₂O, 10% O₂ Rich (5s): 300 ppm NO, 5% CO₂, 5% H₂O, 1.13% CO, 0.68% H₂

