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HECC Objectives
1.

 
Improve brake thermal efficiency by 10% and reduced 
engine out emissions (2010 compliance)

2.
 

Design and develop enabling components and subsystems 
(air handling, fuel injection, base engine, controls, etc.)

3.
 

Specify fuel properties conducive to improvements in 
emissions and fuel efficiency

4.
 

System integration for fuel economy optimization (engine 
and vehicle)

Focus of this talk
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Fuel properties
•

 
Eleven diesel fuels were specially blended according to the 
experimental design with variation in cetane number, distillation 
characteristics & aromatic content 

•
 

Three target Cetane levels (35, 45 and 55)
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HECC vs. FACE fuels

•
 

High Aromatic and high cetane for the HECC could not be achieved
 with commercial refinery blends

•
 

Distillation variation is achieved by blending light-
 

or heavy-cut 
blending streams; cetane number affected by mono-

 
aromatic content

•
 

Heating value, density allowed to float
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Modeling Strategy

Engine emissions and 
performance 
parameters

= f1

 

(Engine 
controls)

+ f2

 

(Fuel 
properties)

NOx

Smoke

Gross indicated 
fuel consumption 
(gisfc)

Combustion 
phasing

….

2nd

 

order with 
square & 
interaction terms

1st

 

order with least 
correlated fuel 
terms
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Fuel property correlations

 T10 T50 T90 Slope Cetane
Mono-

aromatic 
content

Poly-
aromatic 
content

Total 
Aromatic 
content

Density

T50 0.90
T90 0.74 0.94

Slope -0.12 0.30 0.58
Cetane 0.02 0.14 0.12 0.15

Mono-aromatic 
content -0.32 -0.48 -0.36 -0.15 -0.67

Poly-aromatic 
content 0.77 0.78 0.76 0.19 -0.32 -0.17

Total Aromatic 
content 0.53 0.45 0.49 0.09 -0.67 0.41 0.83
Density 0.80 0.74 0.69 0.03 -0.41 0.00 0.97 0.90

Heating value -0.67 -0.56 -0.54 0.02 0.59 -0.25 -0.90 -0.97 -0.96

Limiting to physical properties and the least correlated ones, 
Cetane Ignition quality
T50 Volatility
Slope Rate of change of volatility (T90 – T10)

Cells indicate R-value or 
degree of linear 
relationship +1 or -1 
(strong correlation)
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Experimental method

•
 

Single cylinder ISB engine (displacement 1.1 L/ cyl) 
used for the experiments

•
 

Emissions meet 2010 US-EPA targets
•

 
Full-factorial test design involving independent 
manipulation of

o
 

EGR
o

 
AF ratio

o
 

Rail pressure
o

 
Three pulse fuel injection sequence (pilot, main 
and post)

o
 

Main injection (close-to-TDC)
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Correlation vs. data for NOx
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•

 
Smoke

•
 

Gross indicated fuel consumption (gisfc)
•

 
Combustion phasing, etc.

R-square = 0.955

≈
 

800 data 
points
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Model Results: 
First-order terms for NOx

T-statistic = estimated model coeff.
 standard error

Engine 
parameters
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cetane 
increase 
NOx

Sign indicates the 
directional effect with 
everything else fixed
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Crank Angle for 50% Cumulative Heat Release 
(Normalized)
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Summary
•

 
Functional relationships determined between fuel properties and 
engine emissions (SAE paper will be presented for the 2009 
World Congress)

•
 

Direct effect of fuel properties on gisfc is small, but fuel effects 
on NOx and smoke may result in changes on emissions 
restrained gisfc

•
 

Lower T50 fuel provides simultaneous NOx and smoke benefit; 
higher cetane provides a small NOx reduction (cetane and T50 
are both correlated with mono-

 
and poly-

 
aromatics 

respectively). 

o

 

Literature indicates higher Aromatic higher flame temp. 

•
 

Effect of cetane and T50 on heat release characteristics appears
 too subtle to be detected by in-cylinder pressure based virtual 

sensing
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Future work

Engine responses = f1

 

(Engine 
controls) + f2

 

(Fuel 
properties)

Fix engine controls at 
optimum settings

+
=

Raw Market 
Fuel Property 
Data

1. Optimize for lowest gisfc to determine the “ideal”
 

fuel; assess possible 
improvements over the baseline one

2. Characterize emissions fluctuations due to market fuel property 
variations

3. Combustion-CFD validation of mono-
 

and poly-
 

aromatic hydrocarbon 
influence

4. Fuels induced effect vs. those of: EGR, Airflow, Swirl, etc. 
•

 
Compensate for the variable with the largest effect first.

5. Bio-diesel combustion and control: Engine experiments & modeling, 
sensor and compensation algorithms development

Frequency 
distributions 
for Engine 
responses
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