

The Drive for Energy Independence and Fuels of the Future

Dr. Wolfgang Warnecke

Fuels Technology Group, Shell Global Solutions, Hamburg

13th Diesel Engine Efficiency and Emissions Reduction Conference
August 13 – 16, 2007
Detroit, MI

Copyright © 2007 by Shell Global Solutions

What is the Global Energy Challenge?

Providing access to modern energy for all.

Meeting growing demand while reducing environmental and social impacts.

Shifting towards a low-carbon energy system.

Shell Scenarios

The transport sector will be the natural home for the growing oil demand.

Shell Global Solutions

Top 20 Countries Proven Oil Reserves, End 2005

Source: World Energy Outlook 2006; Oil and Gas Journal (19 December 2005) - Modified

Oil and Gas Reserves-to-Production Ratios

 Oil reserves are expected to last some 40 years

.... and 65 years for natural gas at current production levels.

World Hydrocarbon Resources

Conventional Oil and Gas are less than 2%

Source: Shell analysis

Shell Global Solutions

... and Additional Unconventional Sources

Production of Shale in the US and Oil Sands in Canada

Climbing the Energy Ladder

- +\$25k/capita: little extra energy needed.
- +\$15k/capita: services start to dominate growth.
- +\$10k/capita: industrialisation near complete.
- +\$5k/capita: industrialisation and mobility take off.

Shell Global Solutions

۶

World Crude Oil Trade Patterns

Source: IEA

IEA Crude Oil Import Price Forecast

Shell Global Solutions

High and Low Carbon Pathways

High CO₂ Trajectory Energy by 2050:

- Coal double compared to 2000
- Oil up 50% compared to 2000
- Gas double compared to 2000
- Biofuels at 10% in vehicles
- Vehicle efficiency up 50%.
- · Renewables growing
- Modest increase in nuclear.

Low CO₂ Trajectory Energy by 2050:

- Coal up 50%, but half of power stations use gasification and carbon capture and storage.
- · Oil flat to down.
- Gas nearly triple compared to 2000
- · Biofuels at 20% in vehicles.
- · Hydrogen has arrived.
- Vehicle efficiency up 100%
- Renewables provide half of electricity generation.
- Significant increase in nuclear.
- Sustainable biomass practices.
- Energy efficiency is essential

Q: Can energy demand grow <u>and</u> carbon emissions begin to fall?

1. Intergovernmental Panel on Climate Charge, Third Assessment Asport, 2001.

Shell Global Solutions

1

2. World Business Council for Sustainable Development, Energy and Climate Focus Area; Pathways to 2050 (published December 2005); Policy Directions to 2050 (to be published March/April 2007)

Societal Priorities Result in Different Local Regulations

Shell Global Solutions

Changes to Automotive Fuels Are Inevitable

Options for Transport Fuels

GTL as an Option for Enhanced Oil Independence

- Cleaner-burning synthetic fuel made from natural gas
- Can be used in today's infrastructure and diesel vehicles
- Lower local emissions can help tackle air pollution in cities
- Lifecycle CO₂ from GTL system comparable with refinery system
- Identical products can be made from biomass (BTL) and coal (CTL) Fischer-Tropsch

Local emissions from GTL Fuel compared with conventional diesel

Benefits of second gen. biofuels:

- Greater CO₂ reductions (~90%)
- Improved performance
- Lower costs
- More acceptable feedstocks (use waste)

...however not available in large scale commercial quantities for 5-10

Bio Mass to Liquid (BTL) as 2nd Generation

Ethanol 2nd Generation

logen use non-food biomass to produce ethanol

for blending into conventional gasoline to reduce CO₂ emissions.

Shell is working with CHOREN to develop commercially available biodiesel using a Biomass to Liquid process.

in-situ Conversion Process (ICP) for Shale

- Electric heaters gradually heat shale beneath surface
- Applicable to oil shale and heavy oil
- Heat converts kerogen in the oil shale into oil and gas
- Results in a high recovery of light hydrocarbon products yielding high quality transportation fuels

Hydrogen – We Have Started, but Some Way to Go

. . .

- Only energy company building hydrogen infrastructure in USA, Europe and Asia
- Four hydrogen demonstration projects
- Working to develop mini-networks
- Challenges: production/distribution costs, production process CO₂

Washington DC - combined petrol/hydrogen filling station

Iceland – initiative to transform Iceland into hydrogen economy

Thank you for your attention