

Powertrain

DoE Optimally Controlled Flexible Fuel Powertrain System

Principal Investigator/Presenter: Organization: Date: Project ID # :

Paul Kilmurray MAHLE Powertrain, LLC May 19th, 2009 ft_11_kilmurray

This presentation does not contain any proprietary or confidential information

Overview

Timeline

Phase 11/1/2007- 6/30/2008Phase 27/1/2008- 6/30/2009Phase 37/1/2009- 5/20/2010Phase 45/21/2010- 12/31/2010

Phase 2: 70% complete (as of 03/20/09)

Budget

Total Project Funding (all phases)

- DOE \$1,911,426
- Recipient \$2,235,193

Funding received (by 3/20/09)

- Phase 1 FY 08 \$91,190
- Phase 2 FY 09 <u>\$762,113</u> \$853,303

- Barriers
 - Target: Match Gasoline
 Performance with E85, minimize
 fuel consumption difference
 - Development of a cost effective and reliable full flex fuel engine and control system

Partners

- Michigan State University George Zhu, Harold Schock
- Visteon Corporation David Hung
- Argonne National Laboratory
 Steve McConnell, Thomas Wallner, Robert Larsen
- MAHLE Powertrain (project lead)
 Simon Thwaite

Objectives

- Develop, optimize and demonstrate using design analysis, computer modeling and a prototype engine, a pathway towards:
 - Flex Fuel Vehicles (FFV's) that show a minimized fuel economy penalty when operating on any blend level of ethanol up to E-85 as compared to a conventional gasoline fueled vehicle
 - FFV's that meet US Environmental Protection Agency (EPA) and State emissions regulations (Ultra Low Emissions Vehicle (ULEV))
- Demonstrate a new, commercially viable engine which is optimized for E85 operation, with seamless optimization for other blends:
 - Show minimum economy impact of running E85 when compared to gasoline
 - Show no degradation in vehicle emissions running E85 when compared to gasoline
 - Allow the engine to run at various levels of ethanol fuel content up to 85 percent
 - Demonstrate superior engine performance by fully exploiting the properties of E85
 - Performance increase is incentive for E85 use displacing more gasoline
 - Help DoE promote the economy and social benefits, to the nation, of using E85 fuel

Objectives Over Past Year

MAHLE Powertrain

Phase 1 - Applied Research

- Review and confirm the high level design specifications for the proposed study engine
- Perform a detailed simulation and analysis for the proposed I3 study engine and a baseline 2.2I DI engine for both gasoline and ethanol blends. Using GT Power (engine) and ADVISOR (engine in vehicle) modeling provide comparisons of fuel economy and performance.
- Initial assessment of the hardware technical & economic viability
- Social Benefits Analyses for fuel saving and emission reduction for US from 'oil well to pump' (vehicle engine)

Phase 2 - Exploratory Development

- Optical Engine Design & Fabrication
- In-Cylinder CFD Modeling (Injector Spray)
- Fuel injector design optimization
- Ionization based Ignition System design
- Update engine component design as required
- Procurement of test engine parts
- Closed Loop Combustion Control System
 - Mean Value Engine Model Development
 - Control System h/w & s/w Design
- Baseline comparator engine procurement and dynamometer testing on gasoline and ethanol blends

Milestones

_

MAHLE

Powertrain

BP 1: Milestone # 1

06/30/08

03/16/08

- Fundamental Engine Simulation
 Complete ✓
- Social Benefit Analysis
- Proof of Technical/Economic Viability

BP 2: Milestone # 2

- MAHLE R3 Engine Design Update 🗸
- Major Components procured ✓
- Design & Fabricate Single Cylinder
 Optical Engine 50%
- Fuel Injector Design 80%
- Ionization Ignition System Design 80%

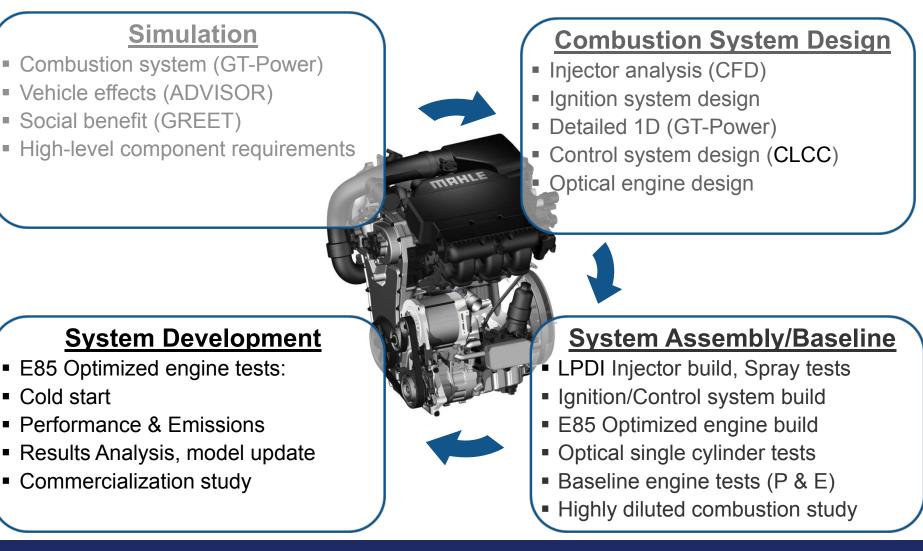
BP 2: Milestone # 3 06/15/09

- CLCC control system design 80%
- Base Comparator Engine Procurement
 & Instrumentation ✓

- BP 3: Milestone # 4 12/31/09
 - Single Cylinder Control System complete
 - BP 3: Milestone # 5 04/30/10
 - Single cylinder engine testing complete
 - BP 3: Milestone # 6

- 05/20/10
- Multi cylinder E85 engine & control system assembled and broken-in
- Baseline engine performance and emission tests and HDC analyses complete
- BP 4: Milestone # 7 12/31/10
 - Multi cylinder E85 engine tests complete
 - Efficiency/fuel economy data analyzed
 - Commercialization analysis
 - Final program report

Approach



- Develop a flexible fuel powertrain that provides volumetric fuel economy, when operating on E85, similar to, or better than, a current gasoline powertrain of similar performance
- Use of existing technology, with suitable modifications, integration actions and tuning to realize a production and commercially viable solution
- Key enablers include
 - Downsizing : Aggressive reduction in swept volume combined with
 - Direct Injection
 - Turbocharging
 - Increased Compression Ratio : Takes advantage of ethanol's higher octane rating & increased heat of vaporization
 - Variable Valve Control, Exhaust Gas Recirculation : Allow optimization across speed/load map, minimize pumping losses & optimize the combustion process
 - **Closed Loop Combustion Control** : Enables fully flexible fuel operation
 - Low Pressure Direct Injection : Offers reduced parasitic losses

Approach Based on existing MAHLE R3 design

Powertrain

Technical Accomplishments/Progress/Results Baseline Engine Selection

- A current US market 'state of the art' high volume engine was selected as a baseline comparator GM 2.2L Ecotec DI
- Basic specifications:

	GM Ecotec	Initial Gasoline	Proposed FFV		
	Comparator	MAHLE R3	MAHLE R3		
Displacement	2198 cc	1200 cc	1200 cc		
Cylinders	4	3	3		
Bore / Stroke	86.0 mm / 94.6 mm	83.0 mm / 73.9 mm	83.0 mm / 73.9 mm		
Fuel Injection	Direct	Direct	Direct		
Aspiration	NA	Turbo	Turbo		
Max Power	114kW @ 5600 RPM 155PS @ 5600 RPM	132kW @ 6000 RPM 180 PS @ 6000 RPM	132kW @ 6000 RPM 180 PS @ 6000 RPM		
Specific Power	51.9 kW / Liter 70.5 PS / Liter	110.8 kW / Liter 150 PS / Liter	110.8 kW / Liter 150 PS / Liter		
Max Torque	220 Nm @ 3800 RPM	286 Nm @ 3000 RPM	286 Nm @ 3000 RPM		
Compression Ratio	12.0 : 1	9.25 : 1	TBC: 12.5 to 14.5		

Technical Accomplishments/Progress/Results Engine Modeling

- GT Power models were constructed for GM & R3 engines
- Simulations run for E10 & E85, to determine fuel consumption over the engine speed / load range
- E22 & E50 results for MAHLE R3 estimated by linear interpolation
- Further R3 optimization runs performed
 - Compression ratio increased from 9:25:1 to 12.5 :1
 - E85 peak cylinder pressure limit of 140 bar maintained by retarding spark
 - Gasoline / E22 / E50 BMEP maintained through increased boost pressure
 - Exhaust temperatures and peak cylinder pressure can be maintained within original R3 design limits
 - Higher compression ratios may yield further fuel economy benefits

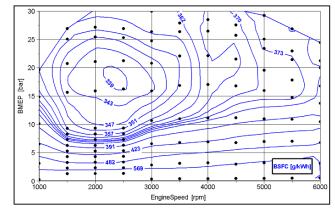


Figure 71. I3 E85 BSFC map with 12.5:1 compression ratio

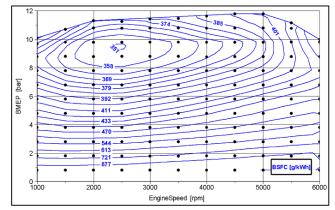
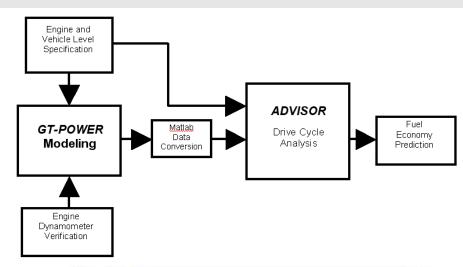
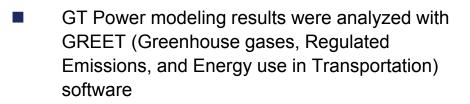



Figure 42. I4 Ecotec E85 BSFC map with 12:1 compression ratio

Technical Accomplishments/Progress/Results Vehicle Performance/Economy Modeling

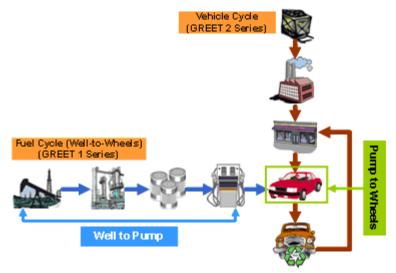
- Vehicle Models created in Visteon's ADVISOR software, based on GT Power engine model
- Model parameterized as Chevrolet Cobalt
- Transmission final drive ratio varied between Ecotec & R3 models
 - Reduced ratio for R3 takes advantage of increased torque to improve fuel economy
- Model runs simulated over FTP-75, HWFE & EUDC Drive Cycles
- Initially run with E85 & gasoline, subsequently corrected for E10
- Results indicate fuel economy penalty of E85 (Vs gasoline) reduced from 30% (typical) to 9%
- E85 FE improvement achieved with 20% performance improvement (0 60 mph)

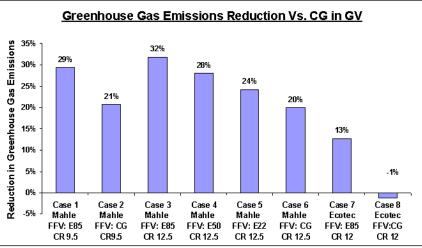
Technical Accomplishments/Progress/Results Vehicle Performance/Economy Modeling



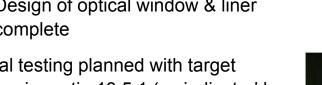
- Further E85 FE optimization possible by :
 - Compression Ratio >12.5:1
 - Further vehicle final drive ratio reduction
 - R3 friction reduction
 - Improved piston & ring pack
 - Split cooling system
 - 2 stage or variable oil pump
 - Cam profile, valve spring force
 - Rolling element camshaft bearings

	Engine		FUEL	Ethanol Content	MP G				OVERALL EFFICIENCY (%)			0-60 mph
	# Cyl	CR		%	FTP	HWFET	Combined FTP & HWFET	EUDC	FTP	HWFET	EUDC	Sec
Mahle with FD = 3.25	13	9.25	E 85	85%	23.4	29.9	25.9	26.0	9.5	18.2	15.8	6.8
			Gas	0%	35.5	45.6	39.4	40.1	9.8	19.0	16.6	6.9
	13	12.50	E 85	85%	26.9	34.9	30.0	29.9	10.9	21.2	18.1	6.6
			E50	50%	30.0	37.9	33.1	33.3	10.3	19.4	17.0	6.7
			E22	22%	34.1	43.4	37.7	38.2	10.2	19.4	17.1	6.7
			Gas	0%	37.4	47.8	41.5	42.0	10.4	19.8	17.4	6.7
Ecotec with FD=3.94	14	12.00	E 85	85%	20.9	25.7	22.8	22.5	8.5	15.6	13.6	8.3
			Gas	0%	31.4	38.6	34.3	33.8	8.7	16.0	14.0	8.3


	Engine		FUEL	Ethanol Content	MPG				0-60m ph
	# Cyl	CR		%	FTP	HWFET	Combined FTP & HWFET	EUDC	Sec
MAHLE FD = 3.25	13	12.50	E85	85%	26.9	34.9	30.0	29.9	6.6
Ecotec FD=3.94	14	12.00	E10	10%	30.3	37.2	33.1	32.6	8.3
			% Difference		-11.2	-6.3	-9.3	-8.3	20.5

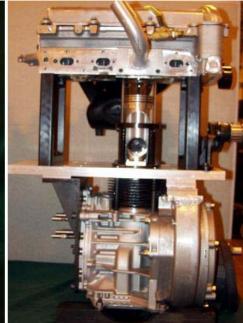

Technical Accomplishments/Progress/Results Social Benefits Analyses

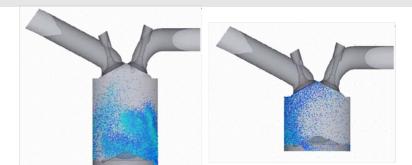
- This is a 'Wells To Wheels' analysis, calculating
 - Emissions of six criteria pollutants: VOCs, CO, NO_x, PM10, PM2.5, SO_x
 - Emissions of CO2-equivalent GHGs
 - Consumption of total energy
- Results indicate that optimized E85 R3 will reduce drive cycle GHGs by 33%, compared to Gasoline Ecotec baseline
- This substantial Green House Gas reduction is achieved with a significant increase in vehicle performance



13

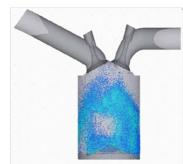
Technical Accomplishments/Progress/Results Optical Engine

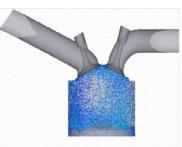

- **Design complete**
 - Con rod designed & manufactured
 - Cylinder head components procured
 - Design of optical window & liner complete
 - Physical testing planned with target compression ratio 13.5:1 (as indicated by GT Power simulations)
 - Motored flow visualization using laser & optical diagnostics for optimal mixture preparation
 - Firing tests to study combustion characteristics
 - Correlate in-cylinder pressure and ionization signals


Technical Accomplishments/Progress/Results In-Cylinder Mixture & Combustion Modeling

Visteon[•]

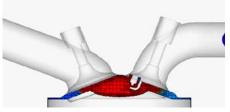
- Injector Design / Selection
 - Lower energy density of E85 demands selection of higher flow injectors
 - GT-Fuel Injector flow dynamics model complete
- In-Cylinder CFD Modeling with Convergent Science Inc.'s CONVERGE
 - 6- & 8-hole injector, gasoline & ethanol A/F distribution simulations complete
 - Combustion flame front simulations on-going
 - Results of further simulations will drive fuel injector selection & nozzle design





Ethanol, 6-hole, 180° BTDC

Ethanol, 6-hole, 90° BTDC



Ethanol, 8-hole, 180° BTDC

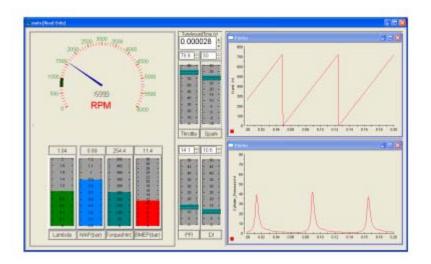
Combustion: 6° BTDC

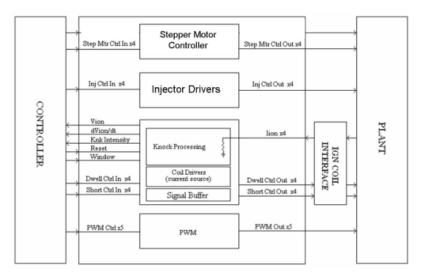
Ethanol, 8-hole, 90° BTDC

Combustion: 0° BTDC

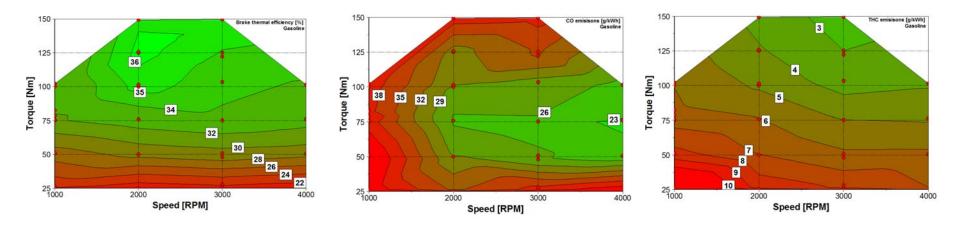
Technical Accomplishments/Progress/Results Ionization Based Ignition System Design

- R3 features of high compression ratio, turbocharging and direct injection result in relatively high in-cylinder pressures
- These conditions demand high spark ignition energy & voltage to ensure adequate combustion stability
- Two current production DI coils, plus a high energy prototype ionization coil, are under consideration
- Ionization signals will be utilized for closed loop combustion control, knock detection, combustion stability control & inferred flex-fuel blend
- Ignition Interface Circuit to drive coils & provide ionization signal has been designed



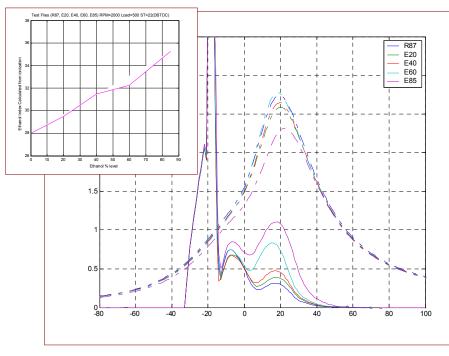

Technical Accomplishments/Progress/Results Model-Based Control System Development

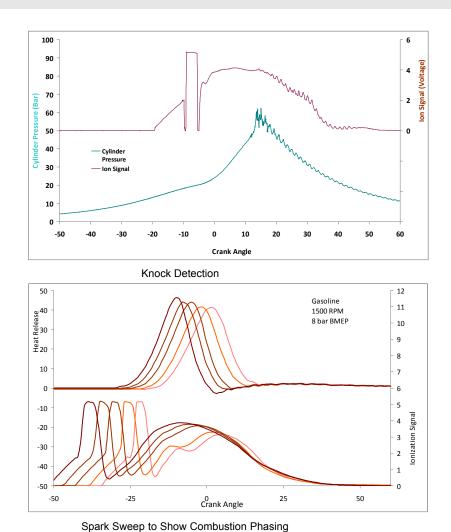
- Mean Value Engine Model Development
 - GT-Power engine model developed to generate calibration for MV engine model
 - dSpace Hardware-In-the-Loop simulator to be used for controller development
- Prototype Control System
 - Engine controller selected: Opal-RT
 - Engine Controller I/O Box designed



Technical Accomplishments/Progress/Results Baseline Engine Benchmarking

- GM 2.2L DI NA Ecotec engine procured
- Dyno suitable Engine Controller obtained
- Ion sensing coil added to stock ignition system
- Baseline gasoline performance, fuel efficiency & emissions mapping complete
- Ion sensing tests conducted with gasoline & E85
- Next step includes baseline mapping with ethanol blends





Technical Accomplishments/Progress/Results Ignition System with Combustion Feedback

- Ionization signal is used to:
 - Infer fuel blend (% ethanol)
 - Determine combustion events and phasing
 - Knock detection

Future Work (FY 2009 & FY 2010)

- Finalize injector design / selection
 - Fabrication of Injectors
 - Injector spray characterization
 - Evaluate performance of single cylinder optical engine with blends of E85 and gasoline
 - Cold flow injection tests with varying boost and injection timing
 - Combustion tests with varying injection timing, boost pressure, ignition energy and timing
 - Evaluate performance of single cylinder metal engine
 - Fuel economy and emission tests for blends of E85 and gasoline
 - E85 Tests Including cold start

- Assemble optimized MAHLE R3 engine
 - Assemble control system
 - Complete break-in dyno tests
- Test optimized R3 engine
 - Performance & emissions tests for E10, E85 and ethanol blends
 - Cold start capability tests
 - Estimate drive cycle fuel economy, based on dyno tests
 - Results Analysis & Reporting
 - Report engine efficiency & FE results, compared to targets
 - Analysis of commercial feasibility of final design

Summary

Relevance: Improvements in Ethanol blend flex fuel engine technologies are being developed to provide similar volumetric fuel economy to current gasoline powertrains of similar performance

Approach: Downsizing with use of existing technology, suitably modified, for a production and commercially viable solution

Key Enablers: Direct Fuel Injection, turbocharging, Increased compression ratio, Closed Loop Combustion Control, Variable Valve Timing

Technical Accomplishments:

- Engine modeled and vehicle simulations completed with gasoline & E85. Current improvement to existing ethanol efficiencies, (10% lower FE than gasoline) - further improvement expected
- GHG reduction of 33% predicted, compared to equivalent gasoline engine

- Single cylinder test engine designed and under construction for combustion analysis
- CFD model for injector spray characteristics and combustion
- Initial hardware designed and ordered for DI, ignition & CLCC systems
- Modeling adherence to 140 bar cylinder pressure limit and low exhaust temperatures for fuel blends indicate that an optimized E85 R3 engine is viable
- No economic concerns, as E85 optimized R3 is based on conventional, well established components and sub-systems
- CLCC yet to be commercially proven, but it is a fully developed and demonstrated technology
- **Collaboration:** Mahle Powertrain (project lead), cosponsors: Michigan State University, Argonne National Laboratory, Visteon Corp.