Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems

Mike Harold, PI University of Houston May 15, 2013

ACE029

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

TIMELINE

- Start: Oct. 1, 2009
- End: Sept. 30, 2013
- 90% complete

BUDGET

- Total project funding
 - DOE: \$2,217,317
 - UH & partner match: \$687,439
- Funding received
 - FY10-present: \$2,217,317
 - No-cost extension through 8/31/13

BARRIERS/TARGETS

- Increase fuel efficiency of light-duty gasoline vehicles by 25% (by 2015): LNT/SCR has potential as non-urea deNOx approach for LD diesel &*lean burn gasoline vehicles*
- Reduce NOx to <0.2 g/bhp-h for heavy-duty diesel (by 2015): LNT/SCR is promising non-urea solution

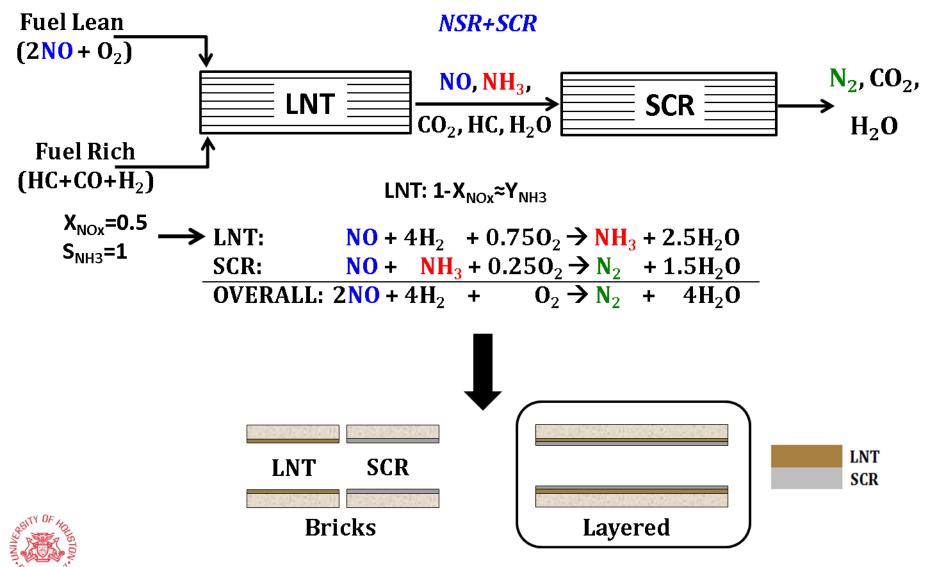
PARTNERS

- U. Houston (lead)
- Center for Applied Energy Research (U. Kentucky)
 - Ford Motor Company
- BASF Catalysts LLC
- Oak Ridge National Lab 💐 🎧

2

- BASE

Overall Goal, Impact & Approach of Project


<u>Goal:</u> Identify the NO*x* reduction mechanisms operative in LNT (Lean NOx Traps) and *in situ* SCR (Selective Catalytic Reduction) catalysts, and to use this knowledge to design optimized LNT-SCR systems in terms of catalyst architecture and operating strategies.

<u>Impact:</u> Progress towards goal will accelerate the deployment of a non-urea NOx reduction technology for diesel vehicles.

<u>Premise of Approach</u>: Focused experiments complemented by predictive reactor models tuned through simulation of experiments can be used to identify optimal LNT/SCR designs & operating strategies

LNT/SCR Technology Concept

4

Principal Challenges & Questions

- LNT/SCR only viable if sufficient NH₃ generated in LNT: Need to identify conditions for NH₃ generation in LNT & main pathways
- Hydrocarbons present during LNT regeneration may slip past LNT: Need to understand and quantify HC role as supplemental reductant in SCR
- LNT/SCR configurations and operating conditions: Which is optimal?
 - Stratified, segmented, multi-layer designs?
 - For multi-layer, how thick should LNT and SCR layers be?
 - How little precious metal can be used to meet NOx reduction targets?
- LNT/SCR operating conditions:
 - How susceptible is performance to regeneration phase composition & make-up?
 - What is more desirable: Prolonged regeneration with low reductant concentration or short regeneration with high reductant concentration?
 - What can be done about low temperature limitations?

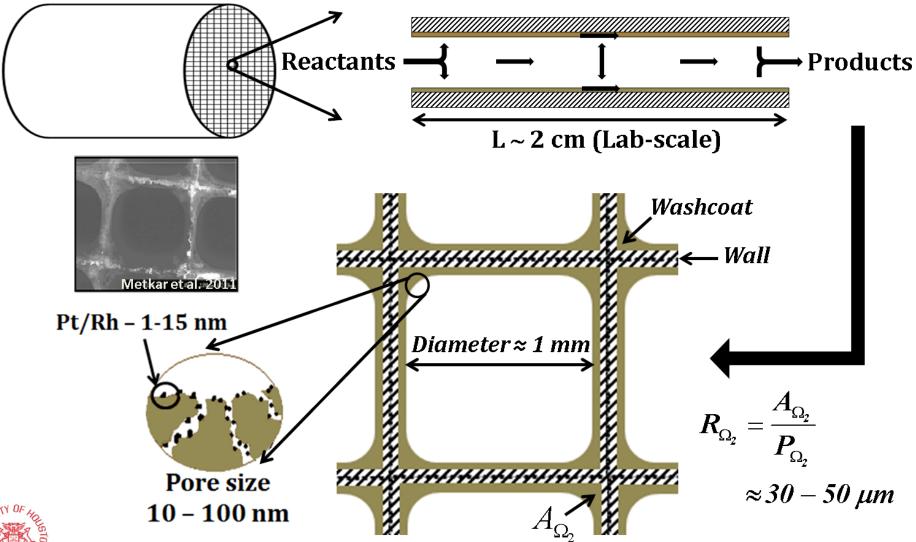
Activity Highlights from this Period

- Comprehensive program combining fundamental catalysis, reaction engineering and vehicle testing
- Collaboration between academic, national lab, and industrial researchers
- Very good progress on Phase 2 & 3 tasks
- Since project inception: 25 peer-reviewed publications, 27 presentations, 1 book chapter, 5 invited lectures & 3 keynotes
- LNT (UK, UH, ORNL, Ford, BASF)
 - Use of isotopic labeling facilitated detailed study of isocyanate (NCO) reactivity
 - Predictive crystallite LNT model predicts lean-rich cycling data & identifies optimal conditions for NH₃ formation as function of catalyst variables like PGM loading & dispersion (and indirectly age)

■ SCR (UK, UH, BASF)

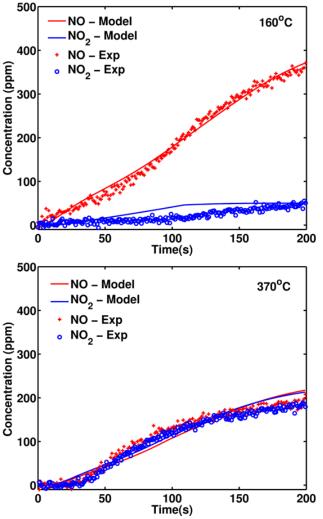
- Monolith reactor model for Fe/ZSM-5 & Cu/chabazite predicts performance over wide range of conditions, including for dual layer Fe/Cu catalyst
- Mechanism of HC-SCR (propene) on Cu-CHA elucidated through systematic bench flow reactor and DRIFTS experiments
- Study of N_2O mitigation by Cu-CHA quantifies this important pathway for N_2O mitigation

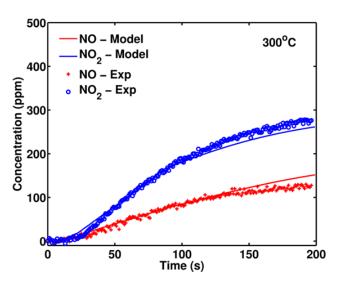
LNT-SCR (UK, UH, BASF)


- Synergy of LNT and SCR catalysts demonstrated for aged system
- Addition of ceria to LNT/SCR dual-layer catalyst shown to improve low temperature performance
- Axial zoning of ceria on dual-layer catalyst shown to be superior to uniform loading
- Predictive (& tuned) LNT/SCR dual layer model developed which predicts the effect of LNT and SCR loading on overall performance

LNT

Modeling Spans Many Scales


LNT Reaction Model

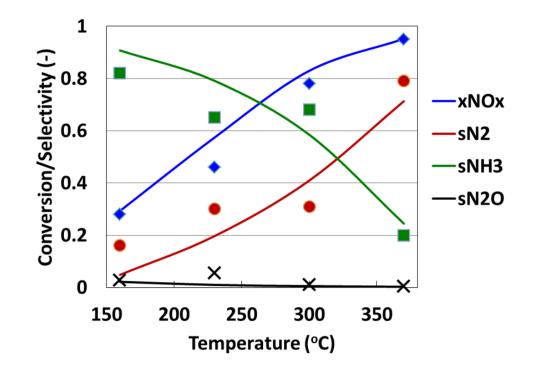

NO oxidation	1.	$NO+0.5O_2 \leftrightarrow NO_2$
NO storage in the	2.	$2 \text{ NO} + 1.5 \text{ O}_2 + \text{BaO}_{(f)} \leftrightarrow \text{Ba(NO}_3)_{2 (f)}$
presence of O ₂	3.	$2 \text{ NO} + 1.5 \text{ O}_2 + \text{BaO}_{(S)} \leftrightarrow \text{Ba(NO}_3)_{2 (S)}$
NO ₂ Storage	4.	$2 \operatorname{NO}_2 + 0.5 \operatorname{O}_2 + \operatorname{BaO}_{(f)} \rightarrow \operatorname{Ba(NO_3)_{2(f)}}$
	5.	$3 \text{ NO}_2 + \text{BaO}_{(s)} \rightarrow \text{Ba}(\text{NO}_3)_{2 (s)} + \text{NO}$
Nitrate reduction by	6.	$Ba(NO_3)_{2(f)} + 3 H_2 \rightarrow BaO_{(f)} + 2 NO + 3 H_2O$
H_2	7.	$Ba(NO_3)_{2(s)} + 3 H_2 \rightarrow BaO_{(s)} + 2 NO + 3 H_2O$
Nitrate reduction by	8.	$Ba(NO_3)_{2(f)} + 10/3 \text{ NH}_3 \rightarrow BaO_{(f)} + 8/3 \text{ N}_2 + 5 \text{ H}_2\text{O}$
NH ₃	9.	$Ba(NO_3)_{2(s)} + 10/3 \text{ NH}_3 \rightarrow BaO_{(s)} + 8/3 \text{ N}_2 + 5 \text{ H}_2\text{O}$
Pt catalyzed NO reduction	10.	$2 \text{ NO} + \text{H}_2 \rightarrow \text{N}_2\text{O} + \text{H}_2\text{O}$
	11.	$NO + 5/2 H_2 \rightarrow NH_3 + H_2O$
	12.	$3/2 \text{ NO} + \text{NH}_3 \rightarrow 5/4 \text{ N}_2 + 3/2 \text{ H}_2 \text{O}$
NH ₃ adsorption and consumption	13.	$NH_3 + X \iff NH_3 - X$
	14.	$NH_3-X+3/4 O_2 \rightarrow 1/2 N_2+3/2 H_2O+X$

Sample Pt (%)		Pt dispersion%	BaO (%)			
Pt/BaO/Al ₂ O ₃	2.48	8	13.0			

NOx Storage: Model vs. Experiment

Conditions:

Lean inlet: 500 ppm NO + 5% O_2 *GHSV:* 60,000 hr⁻¹ (based on monolith volume) (20 ms @ 300°C)

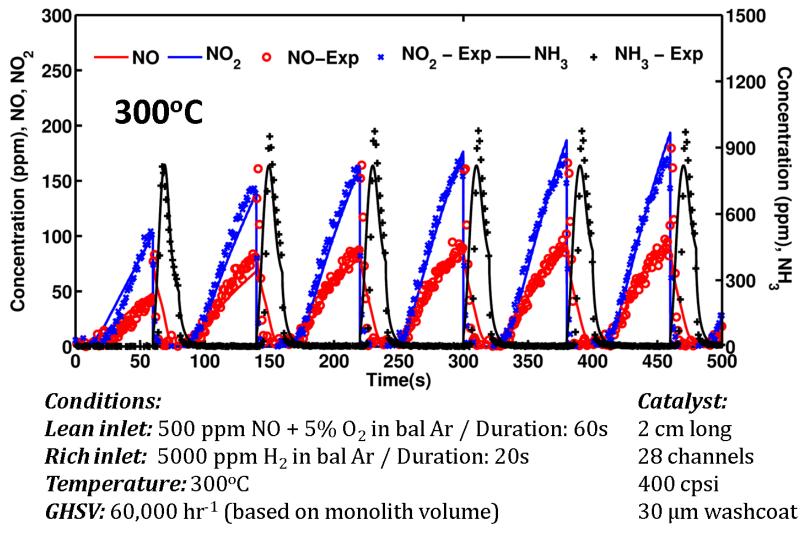

Catalyst:

2 cm long; 28 channels 400 cpsi; 30 μm washcoat

* R.D. Clayton PhD Dissertation University of Houston 2008

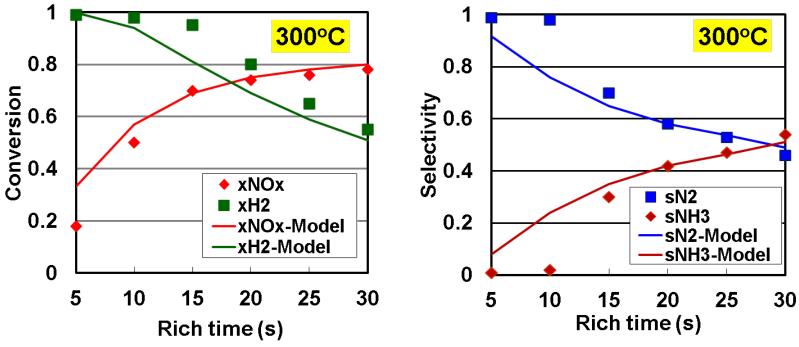
LNT Regeneration: Model vs. Experiments

Conditions: NOx stored: 1.5×10^{-5} moles Rich inlet: 1500 ppm H₂ – 200s GHSV: 60,000 hr⁻¹ (based on monolith volume)


Catalyst: 2 cm long; 28 channels

400 cpsi; 30 μm washcoat

* R.D. Clayton PhD Dissertation University of Houston 2008

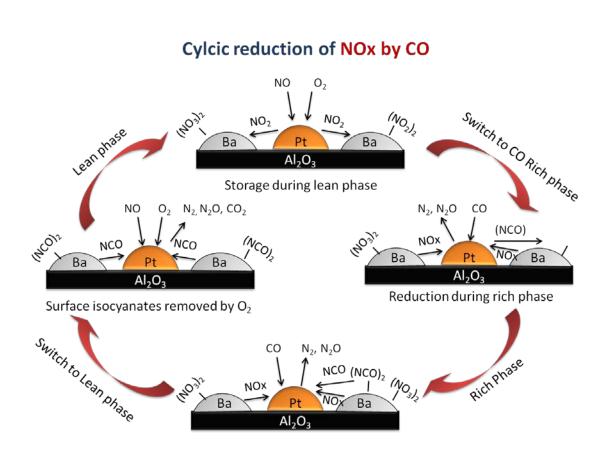

LNT Cycling: Model vs. Experiment

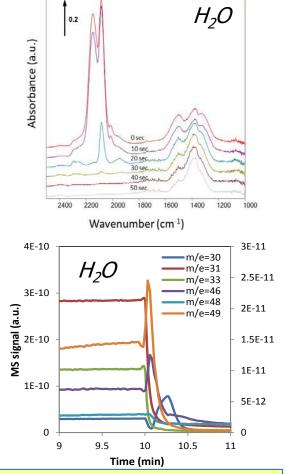
* Shakya et al. / Catalysis Today 184 (2012) 27-42

Effect of Rich Time: Model vs. Experiment

Effect of Rich phase duration

Model accurately predicts the effect of rich phase duration on conversion and selectivity

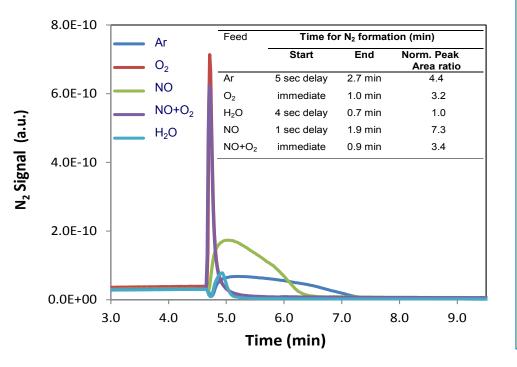

Conditions: Lean inlet: 500 ppm NO + 5% O_2 in bal Ar / Duration: 60s **Rich inlet:** 5000 ppm H₂ in bal Ar / Duration: 5-30s



* Shakya et al. / Catalysis Today 184 (2012) 27-42

NOx Reduction with CO on LNT Catalysts

Evolution of DRIFTS and MS spectra during isothermal reaction of isocyanate ($^{15}N^{13}CO$) at 350 °C under different conditions: O₂, $^{15}N^{18}O$, & H₂O



- Reactivity towards isocyanate: H₂O
 >> O₂ > NO
- H₂O produces NH₃ (which reacts with nitrate to produce N₂); reaction with O₂ gives mainly N₂ and NO₂

DRIFTS Study of NOx Reduction with CO on LNT Catalysts

Isocyanate formation and reactivity studied using DRIFTS/MS, coupled with use of ${}^{15}N^{18}O$ and ${}^{13}CO$ (to differentiate between CO and N_2)

Time dependence of N_2 formation during isothermal reactions of isocyanate at 350 °C:

Main findings:

- Under dry cycling conditions with CO as reductant, N₂ is mainly formed via NCO reaction with NO+O₂ after the L to R switch, rather than being formed during the rich phase
- H₂O is the most reactive species with respect to isocyanate of those tested (H₂O, O₂, NO, NO/O₂)
- In the case of H₂O, N₂ originates from a secondary reaction of the initial product, NH₃, with residual nitrate

SCR

SCR Kinetics: Fe/ZSM-5 & Cu/chabazite

- Systematic kinetic model developed from compartmental approach
 - NO oxidation
 - Standard SCR
 - $\blacksquare NO_2 SCR$
 - Fast SCR

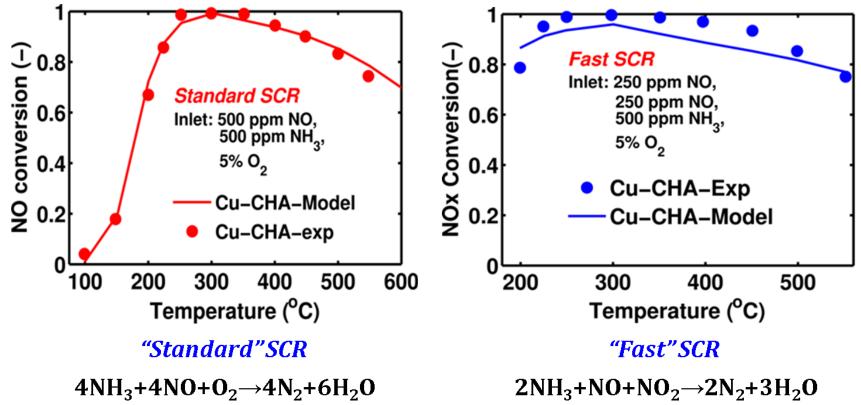
differential kinetics + ammonia uptake + integral kinetics +

Incorporation into SCR monolith model to simulate single-, dual-layer, dual-zone catalysts

Include HC as reductant (ongoing)

SCR Reaction Model

NH ₃ adsorption / desorption	1.	NH ₃ + S ←	\rightarrow	NH ₃ -S
NH ₃ oxidation	2.	$2NH_3-S+1.5O_2$ -	\rightarrow	$N_2 + 3H_2O + 2S$
NO oxidation	3.	$NO + \frac{1}{2}O_2 \in$	\rightarrow	NO ₂
Standard SCR	4.	$4NH_3-S + 4NO + O_2$ -	→	$4N_2 + 6H_2O + 4S$
FastSCR	5.	$2NH_3-S+NO+NO_2$ -	\rightarrow	$2N_2 + 3H_2O + 2S$
NO ₂ -SCR	6.	$4\mathrm{NH}_3-\mathrm{S}+3\mathrm{NO}_2$	\rightarrow	$3.5N_2 + 6H_2O + 4S$
Ammonium nitrate formation	7.	$2NH_3-S+2NO_2 -$	\rightarrow	$N_2 + NH_4NO_3 + H_2O + 2S$
Ammonium nitrate decomposition	8.	NH ₄ NO ₃ -	\rightarrow	$N_2 O + 2H_2 O$


Sample	Cu (%)					
Cu-Chabazite	2.48					

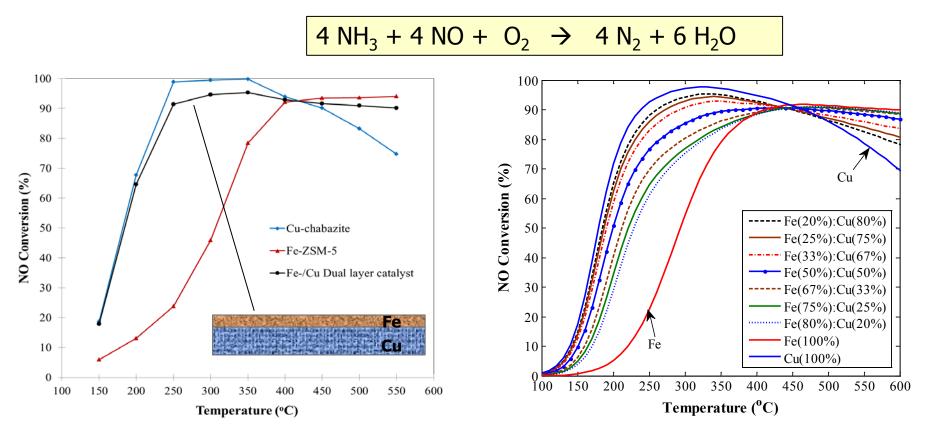
SCR global reaction model comprises major stoichiometric reactions

⁺Metkar et. al. 2012 / Chem. Eng. Sci. / doi: http://dx.doi.org/10.1016/j.ces.2012.09.008

Steady-State SCR on Cu-Chabazite & Fe-ZSM-5: Model vs. Experiment

Cu-Chabazite gives high NO_{x} conversion activity over wide range of operating temperature and feed composition

* Metkar et. al. 2012 / Chem. Eng. Sci. / doi: http://dx.doi.org/10.1016/j.ces.2012.09.008

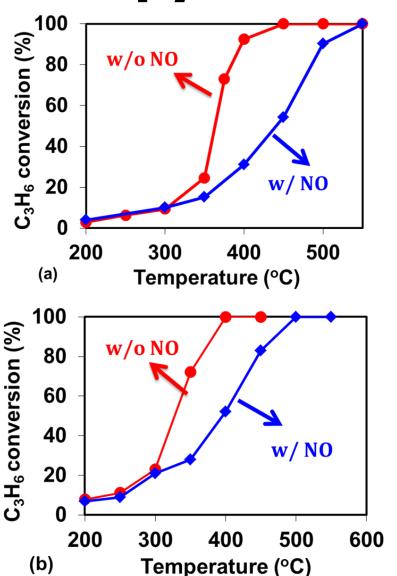

Effect of NO₂/NOx on Cu/CHA & Fe-ZSM-5: Model vs. Experiment

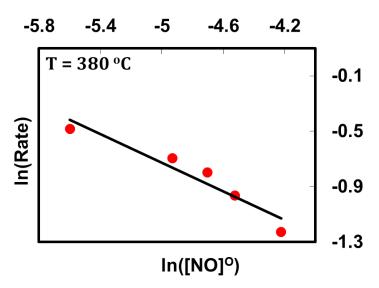
Feed: 500 ppm NH₃,

500 ppm NOx, 5% O₂, 2% H₂O 500 500 450 450 400 400 350 350 Concentration (ppm) **Concentration (ppm)** 300 300 200 C ▲ 225 C 200 C 250 250 ×250 C ×250 C 200 200 × 300 C × 300 C • 350 C 150 150 • 350 C + 400 C +400 C 100 ◆ 450 C 100 ◆450 C - 500 C 50 50 - 500 C ▲ 550 C 0 0 0.5 0.75 0.5 0.25 0.25 0.75 0 NO₂/NOx Inlet Ratio NO₂/NOx Inlet Ratio Fe/ZSM-5 Cu/CHA Model captures large differences between the two catalysts

20

Dual Layer Cu/CHA+Fe/ZSM-5: Model vs. Experiment

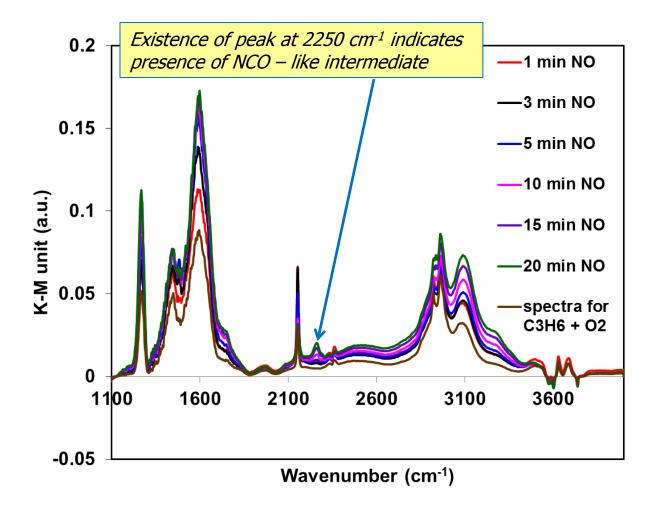



Model

Model captures all of the main trends in dual layer data

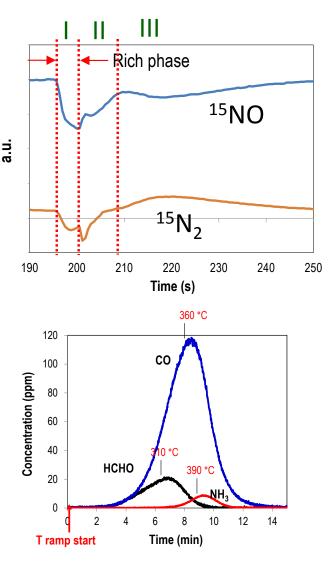
Harold & Metkar, Patent Pending (2011)

Lean NOx Reduction With Propylene on Cu/CHA



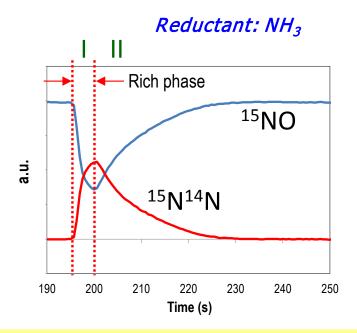
- Evidence for inhibition of propene oxidation by NO confirmed by negative reaction order
- Indicated complex surface chemistry during lean NOx reduction with propylene

DRIFTS Measurements for $C_3H_6+NO+O_2$ on Cu/CHA

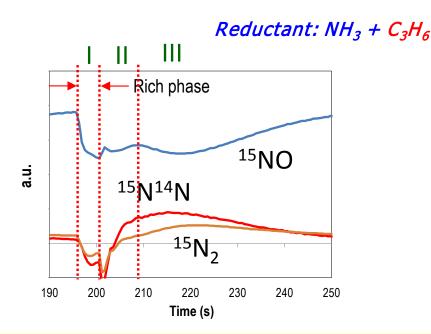


Hydrocarbon NO_x reduction pathway on Cu-chabazite clarified: NH_3 intermediate (1)

Lean/rich cycling (base gas: 5% H_2O , 5% CO_2 , N_2 balance)


- Lean (60 s): 600 ppm $^{15}N^{18}O$, 8% O_2 - Rich (5 s): 600 ppm $^{15}N^{18}O$, 1% O_2 , 3333 ppm C_3H_6

- Rich-phase (regime I)
 - ${}^{15}N^{18}O + C_3H_6$ (gas) $\rightarrow {}^{15}NH_3$ or its precursors
 - Storage of ¹⁵NH₃ or its precursors
- Lean-phase, early (regime II)
 - ${}^{15}N^{18}O + C_3H_6 \text{ (stored)} \rightarrow {}^{15}NH_3 \text{ or its}$ precursors
 - Storage of ¹⁵NH₃ or its precursors
- Lean-phase, late (regime III)
 - ${}^{15}N^{18}O$ + stored ${}^{15}NH_3$ (or precursors) $\rightarrow {}^{15}N_2$
 - ➡ NO reduction via NH₃ intermediate
 - Initiated when C_3H_6 (gas, stored) is depleted
 - Post-cycling temperatureprogrammed desorption confirmed stored NH₃ or NH₃ precursors



Hydrocarbon NO_x reduction pathway on Cu-chabazite clarified: HC inhibition of NH₃ utilization (2)

- Rich-phase (regime I)
 - ${}^{15}N^{18}O + {}^{14}NH_3 (gas) \to {}^{15}N^{14}N$
 - Storage of $^{14}NH_3$
- Lean-phase, early (regime II)
 - ${}^{15}N^{18}O + {}^{14}NH_3$ (stored) $\rightarrow {}^{15}N^{14}N$

- Rich-phase (regime I)
 - Storage of ${}^{14}NH_3$ (gas)
 - Formation/storage of ¹⁵NH₃ or its precursors
- Lean-phase, early (regime II)
 - Formation/storage of ¹⁵NH₃ or its precursors
 - Lean-phase, late (regime III)
 - ${}^{15}N^{18}O$ + stored ${}^{14}NH_3$ and ${}^{15}NH_3$ (or precursors) $\rightarrow {}^{15}N^{14}N$ and ${}^{15}N_2$

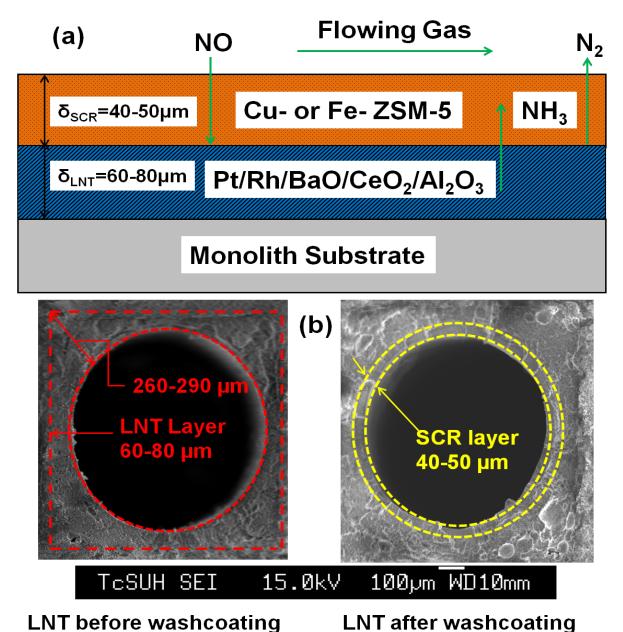


 $C_{3}H_{6}$ inhibition of NO + NH₃ reactions

LNT-SCR

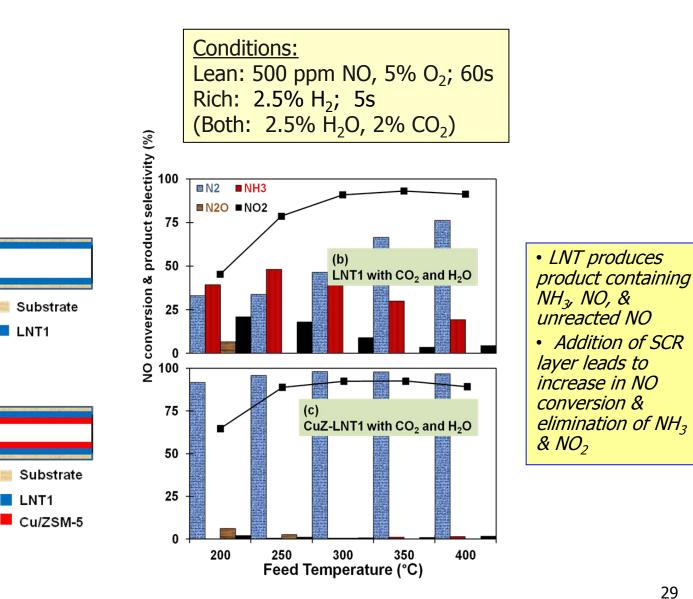
LNT/SCR Dual Brick: Effect of Age

LNT-SCR system aged on bench reactor according to Ford accelerated aging protocol (ca. 75,000 miles)

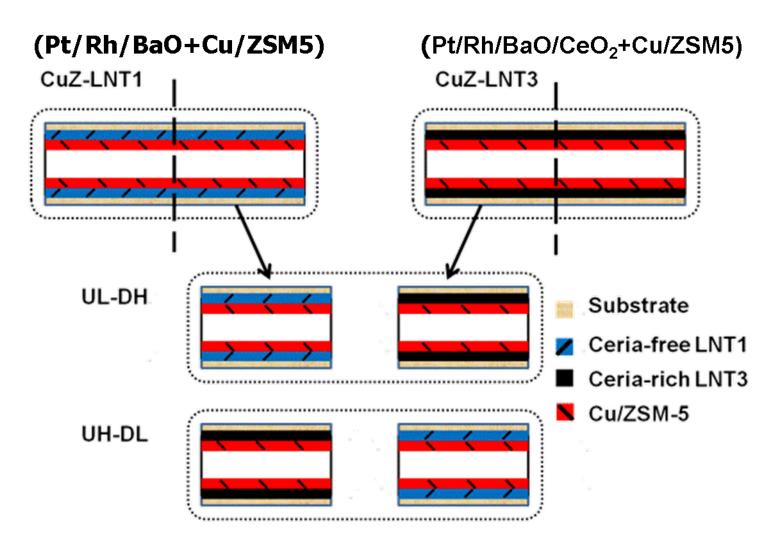

Cycle-averaged NOx conversion for BASF LNT and LNT-SCR systems

Feed: lean (60 s): 500 ppm NO, 8% O_2 , 5% CO_2 , 5% H_2O , balance N_2 ; rich (5 s): 2.5% CO, 5% CO_2 , 5% H_2O , balance N_2 . GHSV = 60,000 h^{-1} .

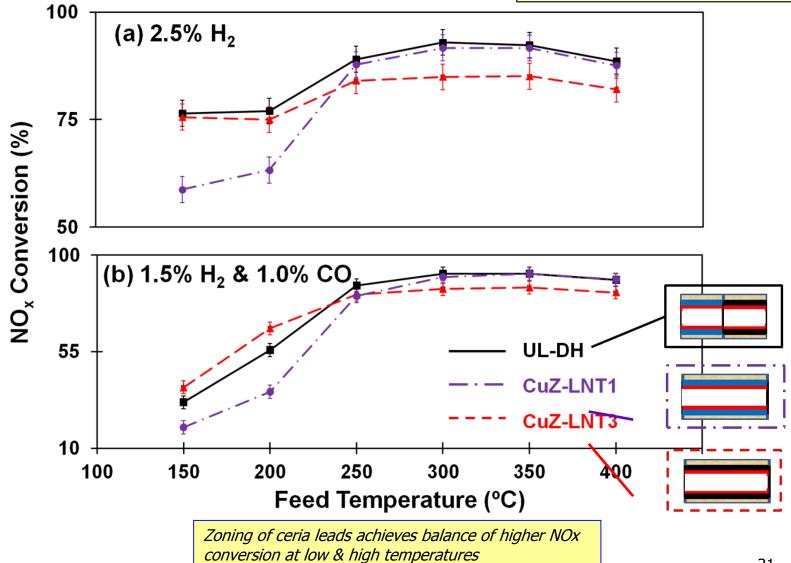
- After aging, NOx conversion over SCR catalyst is increased, due to increased LNT selectivity to NH₃ and increased NOx slip available for reaction
- Hence, SCR catalyst helps to compensate for deterioration in LNT NOx conversion

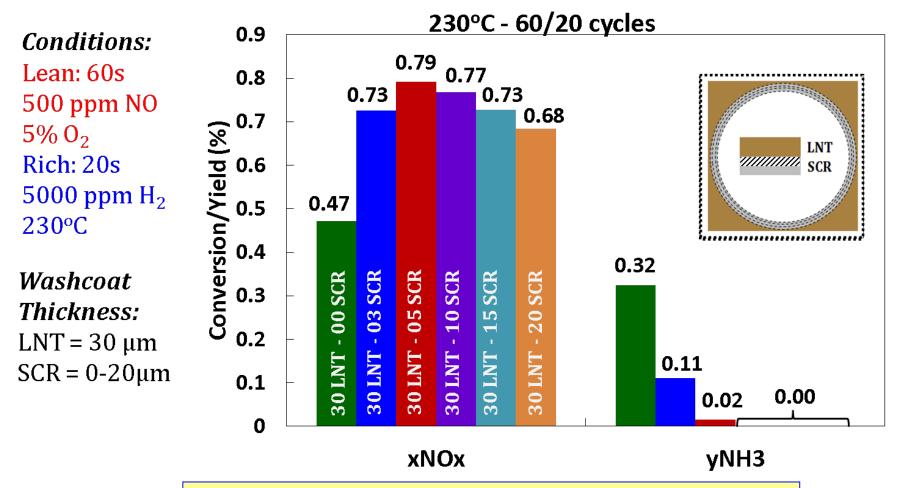


Dual Layer LNT/SCR Catalysts



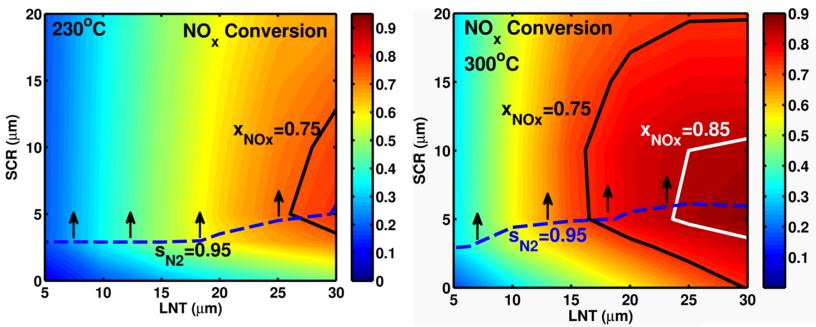
LNT/SCR Dual Layer Synergy


LNT/SCR Dual-Layer: CeO₂ Axial Zoning



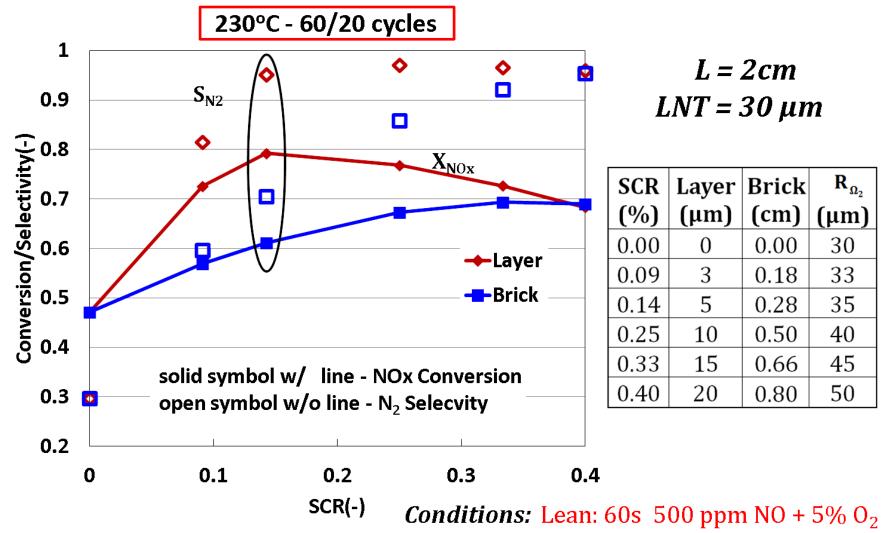
LNT/SCR: Ceria Zoning

Conditions: Lean: 500 ppm NO, 5% O₂; 60s Rich: 2.5% H₂; 5s or 2.5% H₂, 1.0% CO (with 2.5% H₂O, 2% CO₂)


Effect of SCR Washcoat Loading

Excessive SCR loading leads to lower NOx conversion because of undesired diffusion limitation

Effect of LNT/SCR Washcoat Loadings


Several combinations of LNT/SCR loadings are possible to achieve the same conversion

Conditions:

Lean inlet: 500 ppm NO + 5% O₂ in bal Ar / Duration: 60s *Rich inlet:* 5000 ppm H₂ in bal Ar / Duration: 20s *Temperature:* 230°C *GHSV:* 60,000 hr⁻¹ (based on monolith volume)

LNT/SCR: Dual Layer vs. Dual Brick

ABITY OF HOLESTON

Rich: 20s 5000 ppm H₂

Selected Activities Planned: 3Q-4QFY13 (Complete Phase 3)

- LNT:
 - Carry out SpaciMS study of propylene regenerated LNT under nonisothermal conditions
 - Apply crystallite-scale model to combined CO + H₂ reductant mixture
 - SCR:
 - Complete experimental study of reactivity of $NH_3 + C_3H_6 + NO$ on Cu/chabazite
 - Complete kinetic and modeling study of C₃H₆ SCR on Cu/chabazite
 - Complete optimization study of dual layer Cu/Chabazite + Fe/ZSM-5 SCR catalyst

LNT/SCR:

- LNT/SCR experiments
 - Complete SpaciMS study of serial LNT/SCR dual brick
- LNT/SCR reactor modeling
 - Complete modeling study and optimization of LNT/SCR dual layer catalyst
 - Complete modeling study of sequential segmented LNT/SCR for nonisothermal operation

Summary

- Comprehensive program combining fundamental catalysis, reaction engineering and vehicle testing
- In past year, very good progress on Phase 2 & 3 tasks
- No-cost extension period will enable completion of active tasks
- Project has generated considerable pioneering results and understanding of LNT/SCR technology, including 25⁺ peer-reviewed publications and several invited lectures
- Specific technical accomplishments include:
 - Comprehensive isotopic kinetics and reactor performance studies elucidate NO + CO + H₂O on LNT system
 - Demonstration of dual layer LNT/SCR catalyst
 - Prediction that dual layer LNT/SCR catalyst can out-perform dual-brick catalyst under certain conditions
 - Novel use of ceria to achieve enhanced performance over wide temperature range
 - Demonstration that aged LNT/SCR is viable

Predictive reactor models developed for LNT, SCR, & LNT/SCR for data analysis & optimization

Technical Backup Slides

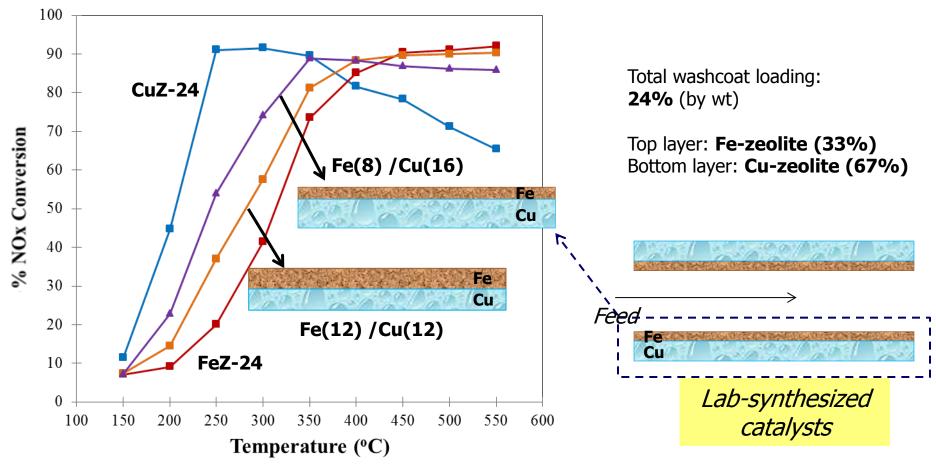
Collaborative Project Team: Current Activities

University of Houston

- Mike Harold (PI), Vemuri Balakotaiah, Dan Luss
- Bench-flow, TAP reactors; LNT NH₃ generation; LNT/SCR multi-layer catalyst synthesis & reactor studies; NH₃ SCR kinetics on Fe and Cu zeolite catalysts

University of Kentucky - Center for Applied Energy Research

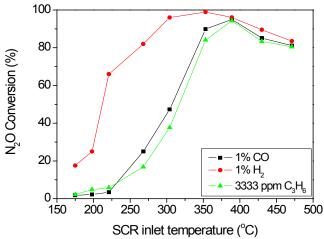
- Mark Crocker (CoPI)
- Bench-flow reactors, SpaciMS: LNT, HC SCR, LNT/SCR segmented reactor studies
- Oak Ridge National Laboratory
 - Jae-Soon Choi
 - Bench-flow reactor, SpaciMS: LNT, SCR spatio-temporal studies
- BASF Catalysts LLC (formerly Engelhard Inc.)
 - Model catalyst synthesis & characterization; Commercial SCR catalyst
- Ford Motor Company (until Aug. 2011)
 - Bob McCabe, Mark Dearth, Joe Theis
 - Bench-flow reactors, SpaciMS
 - Vehicle testing of LNT/SCR system



Schedule of Tasks: Phases 2 & 3

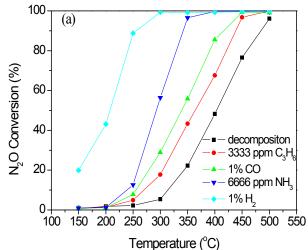
Phase 2 Tasks	Year 2				Year 3				Year 4
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
2.1: Spatiotemporal study of LNT NO_x reduction selectivity			1	-					
2.2: Isotopic TAP study of NO_x reduction on LNT & SCR		1	1	1					
2.3: Transient kinetics of NO_x reduction on LNT & SCR									
2.4: Kinetics of transient NO_x reduction w/ NH_3 on SCR						1			
2.5: Examine effect of PGM/ceria loading on LNT-SCR						(
2.6: Prepare double layer LNT-SCR catalysts									
2.7: Spatiotemporal study of LNT-SCR performance									
2.8: Sulfation-desulfation study of LNT-SCR system									
2.9: Modeling and simulation studies									
2.10: Phase 2 reporting									
Phase 3 Tasks	[ar 2			Year 3			
3.1: In situ DRIFTS study on double layer LNT-SCR	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
3.2: Age LNT-SCR systems on bench reactor									
3.3: Comparison study of segmented LNT-SCR systems									
3.4: Completion of microkinetic model for LNT and SCR									
3.5: Optimization/simulations of LNT-SCR system									
3.6: Identification of optimal segmented LNT-SCR config.									
3.7: Reactor studies on aged LNT-SCR systems									
3.8: Physico-chemical analysis of aged LNT-SCR systems									

Combination of Fe- and Cu-zeolite: Dual-layer Catalyst System (UH)



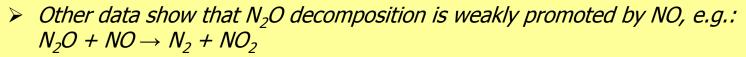
ABITY OF HOUSTON.

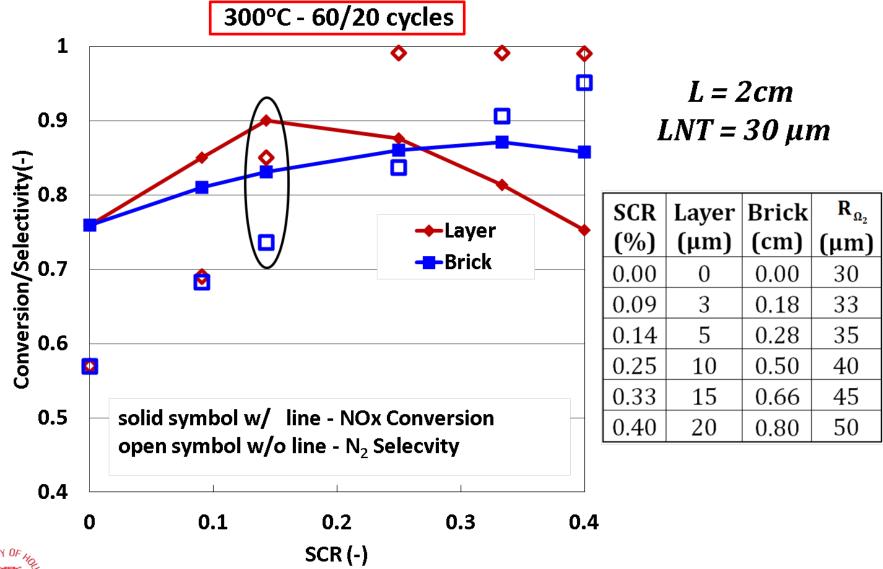
Dual layer catalyst the NO_x reduction efficiency over a wide temperature range


Harold & Metkar, Patent Pending (2011)

N₂O Reduction Over Cu-Chabazite SCR Catalyst

Cycle-averaged N₂O conversion over SCR catalyst in LNT-SCR system during 60 s lean/5 s rich cycling


Lean: 300 ppm NO, 8% O_2 ; Rich: 300 ppm NO, 1% H_2 or 1% CO or 3333 ppm C_3H_6 as reductant; 5% CO_2 , 5% H_2O , N_2 as bal. in L and R phases; GHSV = 30,000 h^{-1}


N₂O conversion over Cu-CHA under steady state, continuous flow conditions

Feed: 100 ppm N_2O , 5% CO_2 , reductant as shown, bal. N_2 ; GHSV = 30,000 h⁻¹

Under L/R cycling, N₂O formed over LNT catalyst is converted to significant degree over Cu-CHA SCR catalyst; H₂ is best reductant

LNT/SCR: Dual Layer vs. Dual Brick

