Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems

Mike Harold, PI University of Houston May 11, 2011

ACE029

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

TIMELINE

- Start: Oct. 1, 2010
- End: Sept. 30, 2012
- 60% complete

BUDGET

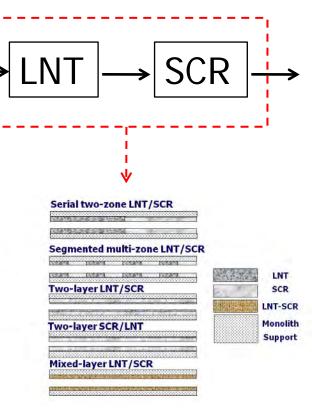
- Total project funding
 - DOE: \$2,217,317
 - UH & partners: \$687,439
- Funding received
 - FY10+FY11: \$1,236,917

BARRIERS/TARGETS

- Increase fuel efficiency of light-duty gasoline vehicles by 25% (by 2015): LNT/SCR has potential as non-urea deNOx approach for LD diesel & *lean burn gasoline vehicles*
- Reduce NOx to <0.2 g/bhp-h for heavy-duty diesel (by 2015): LNT/SCR is promising non-urea solution

- BASI

- U. Houston (lead)
- Center for Applied Energy
 - (U. Kentucky)
- Ford Motor Company
- BASF Catalysts LLC
- Oak Ridge National Lab



LNT/SCR Technology: Observations and Relevance

- LNT/SCR is promising non-urea deNOx technology for light- & medium duty diesel & lean burn gasoline
- Synergistic benefits of LNT/SCR have been demonstrated: Most previous studies show increased NOx conversion by adding SCR unit downstream of LNT
- Coupling between LNT & SCR not understood or characterized
- Optimal catalyst/reactor designs not yet identified; full potential not demonstrated/realized
- Understanding captured in quantitative reactor models and tuned through simulation of experiments will lead to optimal LNT/SCR designs & operating strategies

Goals: Reduce PGM requirements, improve fuel utilization

Overall Goal & Impact of Project

<u>Goal:</u> Identify the NO*x* reduction mechanisms operative in LNT (Lean NOx Traps) and *in situ* SCR (Selective Catalytic Reduction) catalysts, and to use this knowledge to design optimized LNT-SCR systems in terms of catalyst architecture and operating strategies.

<u>Impact:</u> Progress towards goal will accelerate the deployment of a non-urea NOx reduction technology for diesel vehicles.

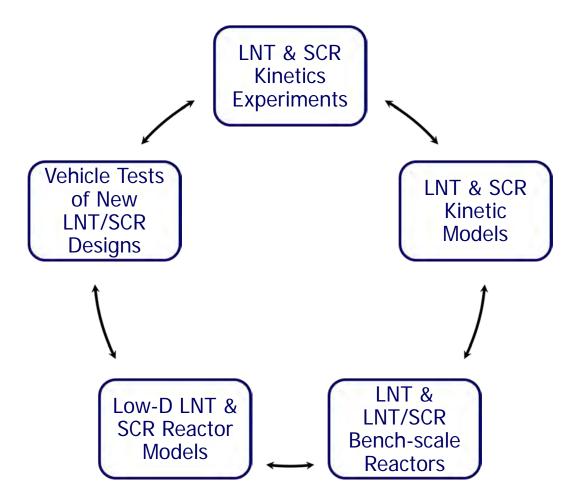
Principal Challenges & Questions

- LNT/SCR only viable if sufficient NH₃ is generated in LNT: Identify conditions for NH₃ generation in LNT & main pathways
- Hydrocarbons present during LNT regeneration may slip past LNT: – need to understanding HC effect on SCR performance
- Possible detrimental interactions between LNT & SCR?
- LNT/SCR designs: Which is optimal?
 - Stratified, segmented, multi-layer?
 - How little precious metal can be used?
- LNT/SCR operating conditions:
 - What about low temperature operation?

How susceptible is performance to regeneration phase composition?

Project Deliverables

Phase 1


- Identify the main NOx conversion pathways and mechanisms in LNT-SCR systems
- Determine LNT catalyst composition effects and operating conditions for maximizing *in situ* ammonia generation, supported by model predictions
- Establish kinetics of primary reactions during NOx storage and reduction and ammonia-based SCR

Phase 2

- Develop first-principles LNT-SCR reactor model for optimization and real-time simulation
- Elucidate spatio-temporal phenomena in LNT-SCR systems with different catalyst architectures
 - Demonstrate ≥20% precious metal thrifting for LNT-SCR system at equivalent NO reduction performance to LNT-only system

Project Approach & Tools

- Catalyst synthesis
 & characterization
- Bench reactors
- FTIR, QMS, CIMS
- SpaciMS
- TAP reactor
- Dynamometers

Premise: Systematic approach and state-of-art tools leads to fundamental understanding & optimized designs

Collaborative Project Team: Current Activities

University of Houston

- Mike Harold (PI), Vemuri Balakotaiah, Dan Luss
- Bench-flow, TAP reactors; LNT NH₃ generation; LNT/SCR multi-layer catalyst synthesis & reactor studies; NH₃ SCR kinetics,

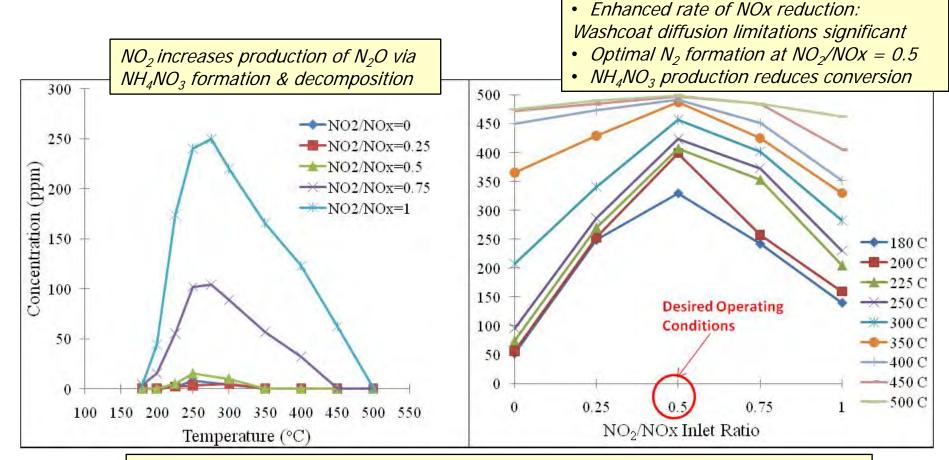
University of Kentucky - Center for Applied Energy Research TT

- Mark Crocker (CoPI)
- Bench-flow reactors, SpaciMS: LNT, HC SCR, LNT/SCR segmented reactor studies
- Oak Ridge National Laboratory
 - Jae-Soon Choi
 - Bench-flow reactor, SpaciMS: LNT, SCR spatio-temporal studies
- BASF Catalysts LLC (formerly Engelhard Inc.)
 - C.Z. Wan
 - Model catalyst synthesis & characterization; Commercial SCR catalyst
- Ford Motor Company
 - Bob McCabe, Mark Dearth, Joe Theis
 - Bench-flow reactors, SpaciMS: LNT studies desulfation, aging
 - Vehicle testing of LNT/SCR system

Schedule of Tasks: Phase 1

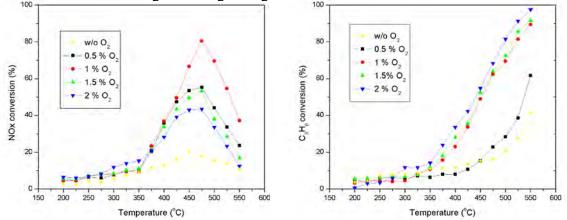
Phase 1 Tasks		Year 1			Year 2			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1.1: Project management & planning			•					
1.2: Reactor study of non-NH ₃ NO _x reduction mechanism								
1.3: DRIFTS study of non-NH ₃ NO _x reduction mechanism			•					
1.4: a. TAP study of NO_x reduction with H_2 & NH_3 on LNT								
1.4: b. TAP study of NO_x reduction with H_2 & NH_3 on LNT			•					
1.5: Kinetics study of NO _x storage & reduction with $H_2/CO/C_3H_6$ on LNT:								
1.5.1: Steady-state kinetics of reactions on LNT 1.5.2: NO_x storage and NO oxidation on LNT								
1.6: Parametric study of LNT NO_x reduction selectivity								
1.7: Development of microkinetic models								
1.8: Development of low-dimensional models								
1.9: Phase 1 reporting			•					

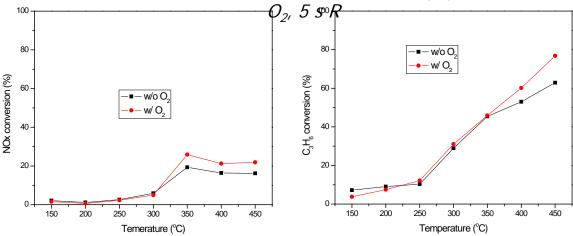
(*Red* indicates in progress; *indicates complete*)


Schedule of Tasks: Phase 2

Phase 2 Tasks	Year 2 Year 3			ar 3				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
2.1: Spatiotemporal study of LNT NO _x reduction selectivity								
2.2: Isotopic TAP study of NO_x reduction: LNT & SCR				 	 			
2.3: Transient kinetics of NO _x reduction LNT & SCR								
2.4: Kinetics of transient NO _x reduction w/ NH ₃ on SCR		I						
2.5: Examine effect of PGM/ceria loading on LNT-SCR								
2.6: Prepare & evaluate double layer LNT-SCR catalysts		I						
2.7: Spatiotemporal study of LNT-SCR performance		1						
2.8: Sulfation-desulfation study of LNT-SCR system								
2.9: Modeling and simulation studies of LNT-SCR		I	I					
2.10: Phase 2 reporting								

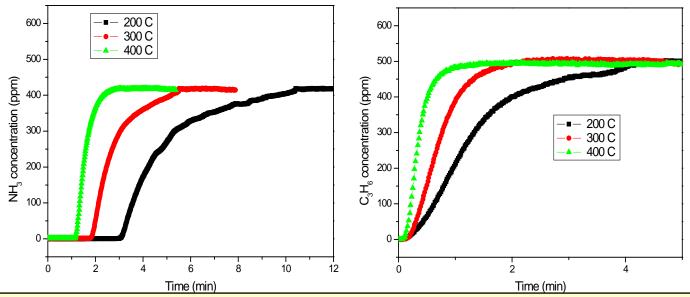
NH₃ Based SCR: Reaction Pathways & Kinetics: Fe/ZSM-5 (UH; Task 2.4)


Fast & NO₂ SCR findings:


- Experimental kinetics study of Fe/ZSM-5 completed
- Similar studies underway for BASF Cu/zeolite
- Predictive kinetic models to be incorporated into LNT/SCR modeling effort

Non-NH₃ Mechanism: NOx Conversion with Propene over Commercial Cu-zeolite SCR Catalyst (UK-CAER; Task 1.2)

Steady-state NOx reduction: 300 ppm NO, 3333 ppm $C_3H_{6'}$ 5% $CO_{2'}$, 5% H_2O , N_2 balance, GHSV = 30,000 h⁻¹

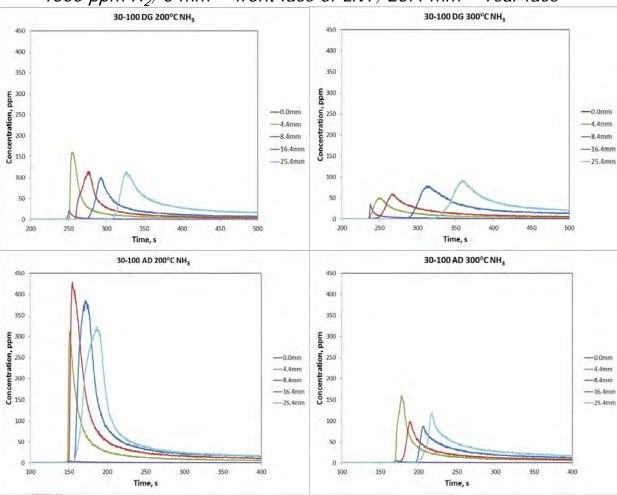

Cycle-averaged NOx reduction: 300 ppm NO, 8% O_2 / 60 s L; 3333 ppm C_3H_6 , 0 or 1%

- Propene & ethylene show moderate activity for NOx reduction over SCR catalyst under steady-state and cycling conditions
- Under cycling conditions, NOx is converted in rich <u>and</u> lean phases with olefins, indicating that olefin storage occurs
- Presence of O₂ beneficial for NOx conversion
- CO also shows some activity for NOx reduction, whereas H₂ does not

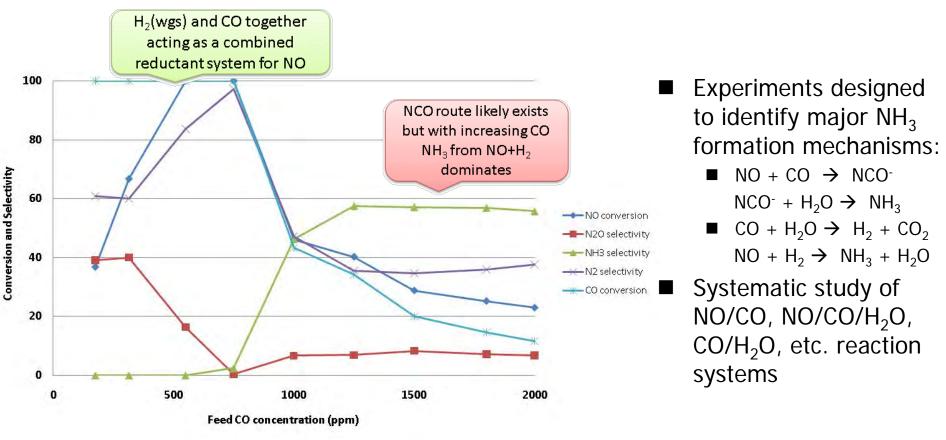
Non-NH₃ Mechanism: NH₃ and Propene Adsorption on Commercial Cu-zeolite SCR Catalyst (UK-CAER; Task 1.2)

 NH_3 (left) and propene (right) adsorption Feed: 500 ppm NH_3 or C_3H_6 , 5% CO_2 , 5% H_2O , balance N_2 , GHSV = 30,000 h⁻¹

• SCR catalyst shows significant adsorption capacity for NH₃, C₃H₆, C₂H₄ and CO


 NH₃ + C₃H₆ co-adsorption experiments: C₃H₆ adsorption slightly inhibited by NH₃ at 200 °C but no inhibition at 300-400 °C; NH₃ adsorption not inhibited → these results suggest that adsorption mainly occurs at different sites

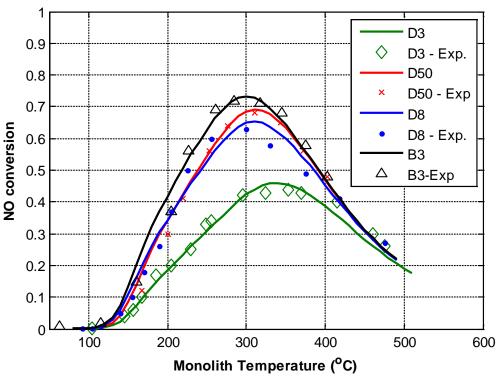
• Olefin TPD experiments: <20% of olefin desorbed "intact", indicating conversion to other species (steam reforming, polymerization, cracking?)


Spatio-temporal Study of LNT NOx Reduction Selectivity (UK-CAER/Ford; Tasks 1.6, 2.1)

High OSC LNT catalyst, degreened (DG) and aged (AD): fixed amount of NOx stored followed by regeneration using 1500 ppm H_2 ; 0 mm = front face of LNT; 25.4 mm = rear face

- SpaciMS enables probing of transient spatial profiles of species concentrations
- Increase in temperature results in slower propagation of reduction front (due to more effective regeneration of storage sites and increased amount of NOx stored)
- Aging results in faster propagation of reduction front (due to elongation of storage zone and decreased total amount of NOx stored)
- Aging results in increased selectivity to NH₃

Reactor Studies of NO/CO/H₂O on Pt/BaO Catalyst (UH; Tasks 1.5, 2.3)



- Results show that NH_3 formation occurs by both isocyanate mechanism (NO + CO + H₂O) and by coupled water gas shift (CO + H₂O \rightarrow H₂ + CO₂) and NO+H₂ and chemistry
- Major pathway depends on conditions such as temperature and NO/CO ratio
- DRIFTS & isotopic labeling studies planned

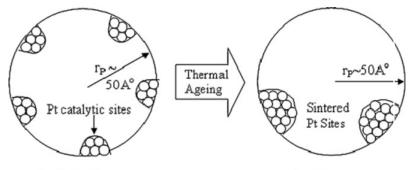
NO Oxidation on Pt/BaO: Effect of Pt Dispersion & Washcoat Diffusion (UH; Tasks 1.5, 1.8)

Steady State NO Oxidation: Comparison of Experiments & Model Predictions

<u>Feed:</u>	500 ppm NO, 5% O ₂ Bal Ar, 1000 sccm	
--------------	---	--

Catalyst	Pt (wt.%)	BaO (wt.%)	Pt Dispersion (%)
B3	2.20	16.3	22
D3	2.48	13.0	3
D8	2.48	13.0	8
D50	2.48	13.0	50

- NO oxidation sensitive to Pt loading, Pt dispersion and temperature
 Findings being incorporated into LNT & LNT/SCP modeling efforts
- Findings being incorporated into LNT & LNT/SCR modeling efforts


NO Oxidation on Pt/BaO: Effect of Pt Dispersion & Washcoat Diffusion (UH)

De (m^2/s)

(7.3±5.0) x 10⁻⁸

 $(1.4\pm0.7) \times 10^{-7}$

(2.8±0.2) x 10⁻⁷

Results suggest that larger Pt particles increase intrinsic activity but decrease effective diffusion coefficient due to pore blocking

Fresh Catalyst

Catalyst

D3

D8

D50

Aged Catalyst

λ

522±360

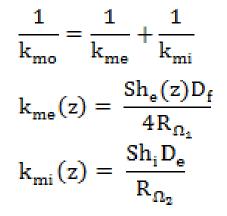
189±96

90±40

B3 Base Case Parameters:
f=1,
$$\lambda$$
 = 100, r_{eff} = 3.33 nm
D_{eNO} = 2.0x10⁻⁷ m²/s
D_{f,NO} = 2.0x10⁻⁵ m²/s

$$k_{i} = k_{B3} \left(\frac{C_{Pt,i}}{C_{Pt,B3}} \right) \frac{1}{f}$$
$$\lambda = \frac{D_{m}}{D_{e}(r_{eff})}$$

r_{eff}


(nm)

1.21

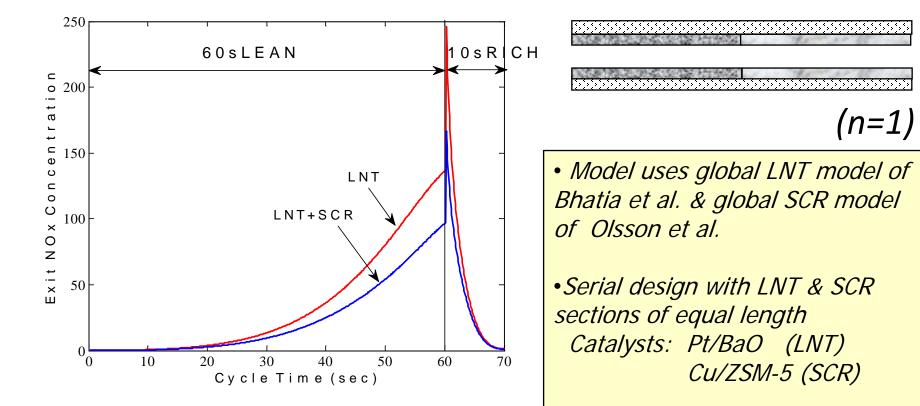
2.33

4.66

 k_i = rate constant f = activity factor D_m = bulk gas diffusivity r_p = average pore size r_c = average Pt radius $r_{eff} \approx r_p - r_c$

Model estimated parameters:

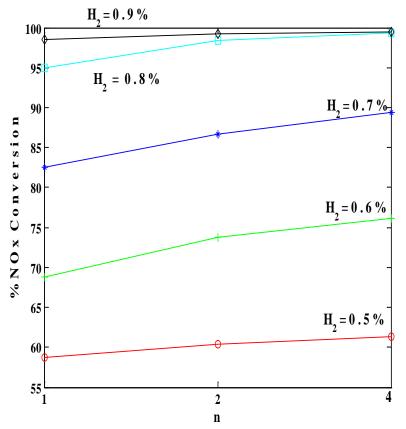
f


0.52±0.28

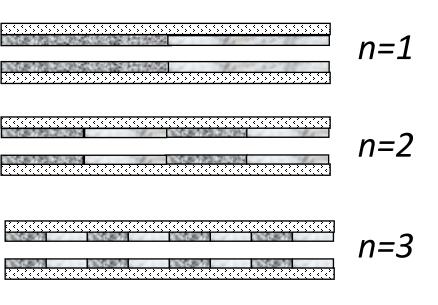
0.51±0.15

4.40±1.20

SITY OF 40
Z CON S
Tounded 1921


Modeling of LNT NOx Reduction Selectivity: Segmented Reactor & Global Kinetics (UH; Tasks 1.8, 2.9)

Length of each catalyst = 2cm; Temperature= $275 \circ C$; GHSV= $60,000h^{-1}$; Lean inlet: NO= $500ppm,O_2=5\%$; Rich inlet: NO= $500ppm,H_2=0.8\%$;


• *Model predicts moderate increase in cycle-averaged NOx conversion with addition of SCR section*

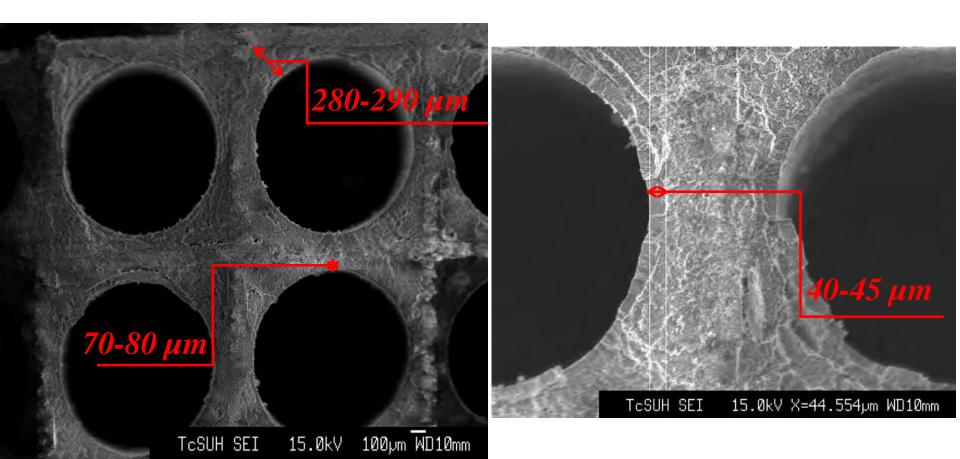
Modeling of LNT NOx Reduction Selectivity: Segmented Reactor & Global Kinetics (UH)

Conditions: Total length = 4cm; T = 275° C ; GHSV=60,000hr⁻¹; Lean cycle (60 sec): 500ppm NO, 5% O₂;

Rich cycle (10 sec): 500ppm NO, $5\% O_2$? Rich cycle (10 sec): 500ppm NO, variable H₂

Arrangement of LNT(Pt/BaO/Al₂O₃) and SCR(CuZSM5) catalysts; n is the number of combined LNT+SCR units. Catalysts are divided equally in each arrangement .

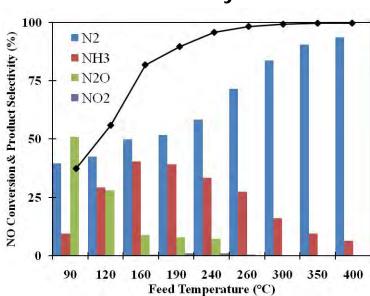
- Moderate increase in cycle-averaged NOx conversion by increasing the degree of contact of the LNT and SCR catalysts
- Model will be used for optimization

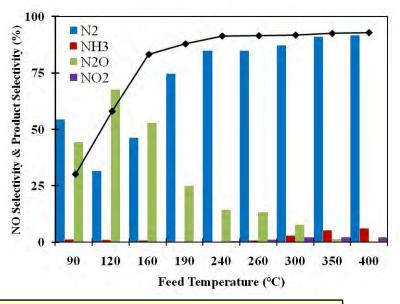

Dual Layer LNT/SCR Catalysts (UH Task 2.6)

LNT

Washcoat thickness:

~80 μ m at wall; ~290 μ m at corner


LNT + SCR Zeolite layer thickness: ~45 μm


Dual Layer LNT/SCR Catalysts (UH; Task 2.6)

Dual layer LNT/SCR catalyst comprises: Bottom layer: Pt/Rh/BaO/alumina; 0.7wt.%/0.07wt.%/20wt.%

Top layer: Fe or Cu/ZSM-5/alumina 3-3.5 wt.% (10% washcoat loading)

LNT only

LNT/SCR (Fe-ZSM-5)

*Initial results with dual-layer catalyst show much reduced NH*₃ *but* increased N₂O; slight decrease in NO conversion due to undesired NO₂ trapping by SCR layer, leading to NOx slippage

Selected Activities Planned: 4QFY11, FY12 (Complete Phase 1 & most of 2; start Phase 3)

■ LNT:

- Complete SpaciMS experiments of LNT with varying ceria & Pt loading
- Carry out model simulations of SpaciMS experiments to further elucidate NH₃ formation in Pt/Rh/CeO₂/BaO monolith
- LNT model developments
 - Extend microkinetic NSR H_2 model to H_2 /CO/HC mixtures
 - Incorporate washcoat diffusion using low-dimensional approach
- SCR:
 - Complete kinetic model development for NH₃ SCR on Fe & Cu zeolites; incorporate findings into SCR models
 - Conduct *in situ* DRIFTS of SCR with HC & HC/NH₃ mixtures
 - LNT/SCR:
 - Continue LNT-SCR experiments, focusing on reducing PGM content
 - Continue double-layer LNT/SCR experiments: Focus on understanding and optimization
 - Carry out vehicle studies at Ford using full-scale LNT/SCR system
 - LNT/SCR reactor modeling
 - Incorporate latest upgrades in kinetic models
 - Optimize LNT/SCR segmented architecture
 - Extend to double-layer formulations to guide experiment

Publications & Presentations

Publications – Appeared

• Joshi, S., Y. Ren, M.P. Harold, and V. Balakotaiah, "Determination of Kinetics and Controlling Regimes for H₂ Oxidation on Pt/Al₂O₃ Monolithic Catalyst Using High Space Velocity Experiments," Appl. Catal. B. Environ., doi:10.1016/j.apcatb.2010.12.030 (2011).

• Kumar, A., M.P. Harold, and V. Balakotaiah, "Estimation of Stored NOx Diffusion Coefficient in NOx Storage and Reduction," *I&EC Research*, **49**, 10334-10340 (2010).

• Kumar, A., X. Zheng, M.P. Harold, and V. Balakotaiah, "Microkinetic Modeling of the NO + H₂ System on Pt/Al₂O₃ Catalyst Using Temporal Analysis of Products," J. Catalysis, **279**, 12–26 (2011).

– In Press

• Ji, Y., V. Easterling, U. Graham, C. Fisk, M. Crocker, J.-S. Choi, "Effect of Aging on the NO_x Storage and Regeneration Characteristics of Fully Formulated Lean NO_x Trap Catalysts", *Appl. Catal. B*, in press (2011).

• Liu, Y., M.P. Harold, and D. Luss, "Spatiotemporal Features of Pt/CeO₂/Al₂O₃ Catalysts During Lean/Rich Cycling," Appl. Catal. A. General., to appear (2011).

• Metkar, P., N. Salazar, R. Muncrief, V. Balakotaiah, and M.P. Harold, "Selective Catalytic Reduction of NO with NH₃ on Iron Zeolite Monolithic Catalysts: Steady-State and Transient Kinetics," Appl. Catal. B. Environmental, to appear (2011).

• Wang, J., Y. Ji, V. Easterling, M. Crocker, M. Dearth, R.W. McCabe, "The Effect of Regeneration Conditions on the Selectivity of NOx Reduction in a Fully Formulated Lean NOx Trap Catalyst", accepted for publication in *Catal. Today* (2011).

• Xu, J., M. Harold, and V. Balakotaiah, "Microkinetic Modeling of NOx Storage on Pt/BaO/Al₂O₃ Catalysts: Pt Loading Effects," Appl. Catal. B. Environ., to appear (2011).

– In Review

• Wang, J., Y. Ji, U. Graham, C.S. Spindola de Oliveira, M. Crocker, "NOx Reduction on Fully Formulated Lean NOx Trap Catalysts Subjected to Simulated Road Aging: Insights from Steady-State Experiments", submitted to *Chin. J. Catal.* (2011).

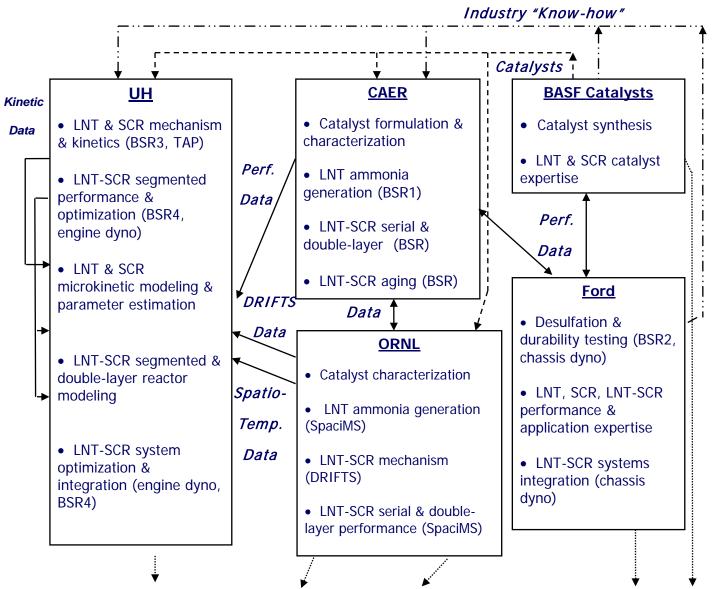
Presentations:

• Total: 13 oral presentations (DEER, AIChE, ACS, Inter. Conf. Envir. Catal., ISCRE, CLEERS)

3 invited presentations (Chicago Catalysis Club, Michigan Catalysis Society)

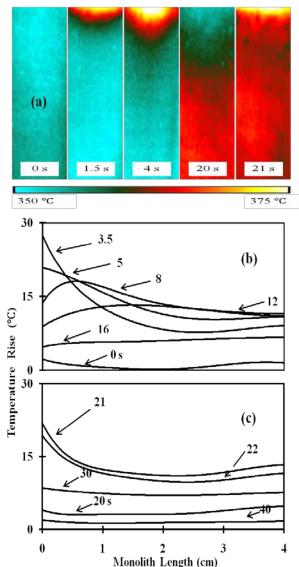
9 poster presentations (AIChE, DEER, ISCRE)

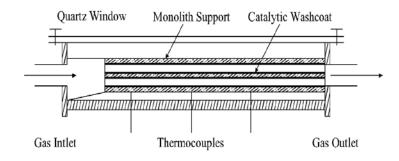
Summary


- Comprehensive program combining fundamental catalysis, reaction engineering and vehicle testing
- Good progress on Phase 1 & 2 tasks
 - Non-NH₃ SCR mechanism understood opens up new avenues for coupled NH₃ and HC reduction
 - Conditions for NH₃ generation identified from spatiotemporal data
 - Established understanding of NH₃-based SCR kinetics for Fe- & Cu-zeolites
 - Progress on using models to understand data and to guide future experiments

Technical Backup Slides

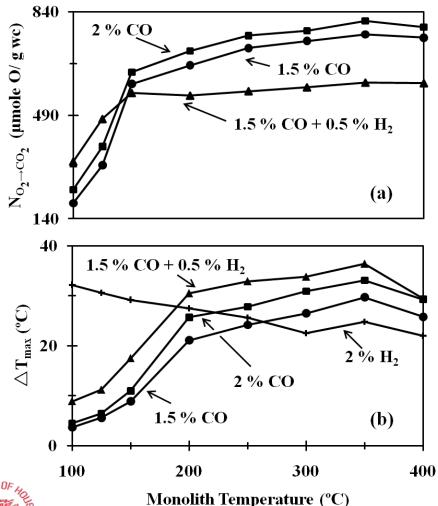
Approach: Team Participants




Reports, Publications, Presentations, Graduates

Commercialization

Periodic Oxidation of H₂ on Pt/CeO₂ (UH; Tasks 1.5, 2.3)


- Systematic study of transient oxidation of H₂ on Pt/CeO₂/Al₂O₃ monolith
- Use of infrared imaging to follow spatio-temporal distribution of temperature

Results show significant nonuniform heat effects along length of monolith

Results have bearing on rich phase of NOx storage and reduction

Periodic Co-oxidation of H₂ and CO on Pt/CeO₂ (UH; Tasks 1.5, 2.3)

- Periodic O_2/CO (lean)+ H_2 (rich) $CO + \frac{1}{2}O_2 \rightarrow CO_2$ $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$
- Systematic study of transient co-oxidation of H₂ & CO on Pt/CeO₂/Al₂O₃ monolith

Results show significant enhancement of CO oxidation by addition of H2; suggests enhanced CO desorption and/or formation of faster pathway involving HCO intermediate

Project Objectives

Phase 1 Objectives:

- Elucidate the mechanism of the non-NH₃ pathway for NOx reduction by means of bench-scale reactor, *in situ* DRIFTS reactor, and TAP reactor studies
- Map LNT selectivity to NH₃ as a function of catalyst composition (ceria content and type) and relevant process parameters (NOx loading, purge duration, purge lambda and space velocity)
- Develop a microkinetic LNT model that takes into account the catalyst composition (storage component such as ceria and barium loading as well as precious metal such as Pt loading/dispersion) and H₂, CO, and C₃H₆ reductants
- Develop low-dimensional models for the LNT and the coupled LNT-SCR unit for different catalyst architectures incorporating microkinetics

Project Objectives

Phase 2 Objectives:

- Establish the chemical basis for the dependence of LNT NH₃ selectivity on ceria content
- Determine optimum ceria type and content in model LNT catalysts to achieve best net NOx conversion in serial LNT-SCR catalysts
- Establish the optimal operating strategy of serial and double layer catalyst systems with respect to NOx conversion level and fuel penalty
- Determine the level of PGM reduction possible in the serial LNT-SCR catalyst system while providing equivalent performance to the corresponding LNT-only system
- Develop microkinetic SCR model that includes non-NH₃ mechanism
- Carry out experimental optimization study of segmented LNT-SCR catalyst configurations
- Establish sulfur evolution on serial and double layer systems

Perform simulations of the LNT and coupled LNT-SCR unit using the low-dimensional