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Overview
TIMELINE

 Start:  Oct. 1, 2010
 End:  Sept. 30, 2012
 60% complete

BUDGET

 Total project funding
 DOE:  $2,217,317
 UH & partners: $687,439

 Funding received
 FY10+FY11: $1,236,917

BARRIERS/TARGETS

 Increase fuel efficiency of light-duty 
gasoline vehicles by 25% (by 2015): 
LNT/SCR has potential as non-urea 
deNOx approach for LD diesel &lean 
burn gasoline vehicles

 Reduce NOx to <0.2 g/bhp-h for 
heavy-duty diesel (by 2015):  LNT/SCR 
is promising non-urea solution

PARTNERS

 U. Houston (lead)
 Center for Applied Energy 

(U. Kentucky)
 Ford Motor Company
 BASF Catalysts LLC
 Oak Ridge National Lab
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LNT/SCR Technology:  
Observations and Relevance 

 LNT/SCR is promising non-urea deNOx 
technology for light- & medium duty diesel & 
lean burn gasoline

 Synergistic benefits of LNT/SCR have been 
demonstrated:  Most previous studies show 
increased NOx conversion by adding SCR 
unit downstream of LNT

 Coupling between LNT & SCR not understood 
or characterized

 Optimal catalyst/reactor designs not yet 
identified; full potential not 
demonstrated/realized

 Understanding captured in quantitative reactor 
models and tuned through simulation of 
experiments will lead to optimal LNT/SCR 
designs & operating strategies

 Goals:  Reduce PGM requirements,            
improve fuel utilization 3

LNT SCR 



Overall Goal & Impact of Project

Goal: Identify the NOx reduction mechanisms 
operative in LNT (Lean NOx Traps) and  in situ 
SCR (Selective Catalytic Reduction) catalysts, 
and to use this knowledge to design optimized 
LNT-SCR systems in terms of catalyst 
architecture and operating strategies.

Impact: Progress towards goal will accelerate 
the deployment of a non-urea NOx reduction 
technology for diesel vehicles.
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Principal Challenges & Questions
 LNT/SCR only viable if sufficient NH3 is generated in 

LNT:   Identify conditions for NH3 generation in LNT & 
main pathways

 Hydrocarbons present during LNT regeneration may 
slip past LNT: – need to understanding HC effect on 
SCR performance

 Possible detrimental interactions between LNT & SCR?
 LNT/SCR designs:  Which is optimal?

 Stratified, segmented, multi-layer?  
 How little precious metal can be used?

 LNT/SCR operating conditions:  
 What about low temperature operation?
 How susceptible is performance to regeneration phase composition?
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Project Deliverables
Phase 1
 Identify the main NOx conversion pathways and mechanisms in 

LNT-SCR systems
 Determine LNT catalyst composition effects and operating 

conditions for maximizing in situ ammonia generation, supported by 
model predictions

 Establish kinetics of primary reactions during NOx storage and 
reduction and ammonia-based SCR

Phase 2
 Develop first-principles LNT-SCR reactor model for optimization and 

real-time simulation
 Elucidate spatio-temporal phenomena in LNT-SCR systems with 

different catalyst architectures
 Demonstrate ≥20% precious metal thrifting for LNT-SCR system at 

equivalent NOx reduction performance to LNT-only system
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Project Approach & Tools
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LNT & SCR 
Kinetics 

Experiments

LNT & SCR 
Kinetic 
Models

LNT & 
LNT/SCR 

Bench-scale 
Reactors

Low-D LNT & 
SCR Reactor 

Models

Vehicle Tests 
of New 

LNT/SCR 
Designs 

Premise:  Systematic approach  and state-of-art tools leads 
to fundamental understanding  & optimized designs 

• Catalyst synthesis      
& characterization

• Bench reactors
• FTIR, QMS, CIMS
• SpaciMS
• TAP reactor
• Dynamometers
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Collaborative Project Team:  
Current Activities

 University of Houston
 Mike Harold (PI), Vemuri Balakotaiah, Dan Luss 
 Bench-flow, TAP reactors; LNT - NH3 generation; LNT/SCR multi-layer catalyst 

synthesis & reactor studies; NH3 SCR kinetics, 

 University of Kentucky - Center for Applied Energy Research
 Mark Crocker (CoPI)
 Bench-flow reactors, SpaciMS:  LNT, HC SCR, LNT/SCR segmented reactor studies

 Oak Ridge National Laboratory
 Jae-Soon Choi
 Bench-flow reactor, SpaciMS:  LNT, SCR spatio-temporal studies

 BASF Catalysts LLC (formerly Engelhard Inc.)
 C.Z. Wan
 Model catalyst synthesis & characterization; Commercial SCR catalyst

 Ford Motor Company
 Bob McCabe, Mark Dearth, Joe Theis
 Bench-flow reactors, SpaciMS:  LNT studies – desulfation, aging  
 Vehicle testing of LNT/SCR system 



Schedule of Tasks:  Phase 1
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(Red indicates in progress;       indicates complete)

 

Phase 1 Tasks Year 1 Year 2 
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

1.1: Project management & planning   •  •    •  •  •   
1.2:  Reactor study of non-NH3 NOx reduction mechanism   •  •    •  •  •   
1.3:  DRIFTS study of non-NH3 NOx reduction mechanism •  •  •    •  •  •   
1.4: a. TAP study of NOx reduction with H2 & NH3 on LNT •  •  •    •  •  •   
1.4: b. TAP study of NOx reduction with H2 & NH3 on LNT •  •  •    •  •  •   
1.5: Kinetics study of NOx storage & reduction with 
H2/CO/C3H6 on LNT:    
1.5.1: Steady-state kinetics of reactions on LNT 
1.5.2: NOx storage and NO oxidation on LNT 

  •  •    •  •  •   

1.6: Parametric study of LNT NOx reduction selectivity   •  •    •  •  •   
1.7: Development of microkinetic models   •  •    •  •  •   
1.8: Development of low-dimensional models   •  •    •  •  •   
1.9: Phase 1 reporting •  •  •    •  •  •   



Schedule of Tasks:  Phase 2
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Phase 2 Tasks Year 2 Year 3 
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

2.1: Spatiotemporal study of LNT NOx reduction selectivity          
2.2: Isotopic TAP study of NOx reduction:  LNT & SCR           
2.3: Transient kinetics of NOx reduction -- LNT & SCR         
2.4: Kinetics of transient NOx reduction w/ NH3 on SCR         
2.5: Examine effect of PGM/ceria loading on LNT-SCR         
2.6: Prepare & evaluate double layer LNT-SCR catalysts         
2.7: Spatiotemporal study of LNT-SCR performance         
2.8: Sulfation-desulfation study of LNT-SCR system         
2.9: Modeling and simulation studies of LNT-SCR         
2.10: Phase 2 reporting         



NH3 Based SCR:  Reaction Pathways & 
Kinetics: Fe/ZSM-5  (UH; Task 2.4) 
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Fast & NO2 SCR findings:
• Enhanced rate of NOx reduction:   
Washcoat diffusion limitations significant
• Optimal N2 formation at NO2/NOx = 0.5
• NH4NO3 production reduces conversion

NO2 increases production of N2O via 
NH4NO3 formation & decomposition

• Experimental kinetics study of Fe/ZSM-5 completed
• Similar studies underway for  BASF Cu/zeolite 
• Predictive kinetic models to be incorporated into LNT/SCR modeling effort
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Non-NH3 Mechanism: NOx Conversion with 
Propene over Commercial Cu-zeolite SCR 

Catalyst (UK-CAER; Task 1.2)
Steady-state NOx reduction: 300 ppm NO, 3333 ppm C3H6, 

5% CO2, 5% H2O, N2 balance,  GHSV = 30,000 h-1

Cycle-averaged NOx reduction: 
300 ppm NO, 8% O2 / 60 s L; 3333 ppm C3H6, 0 or 1% 

O2, 5 s R  

• Propene & ethylene show
moderate activity for NOx 
reduction over SCR catalyst 
under steady-state and cycling 
conditions

• Under cycling conditions, NOx
is converted in rich and lean   
phases with olefins, indicating 
that olefin storage occurs   

• Presence of O2 beneficial for
NOx conversion 

• CO also shows some activity
for NOx reduction, whereas
H2 does not 
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Non-NH3 Mechanism: NH3 and Propene 
Adsorption on Commercial Cu-zeolite SCR 

Catalyst (UK-CAER; Task 1.2)
NH3 (left) and propene (right) adsorption

Feed: 500 ppm NH3 or C3H6, 5% CO2, 5% H2O, balance N2, GHSV = 30,000 h-1

• SCR catalyst shows significant adsorption capacity for NH3, C3H6, C2H4 and CO

• NH3 + C3H6 co-adsorption experiments: C3H6 adsorption slightly inhibited
by NH3 at 200 oC but no inhibition at 300-400 oC; NH3 adsorption not inhibited 
 these results suggest that adsorption mainly occurs at different sites

• Olefin TPD experiments: <20% of olefin desorbed “intact”, indicating
conversion to other species (steam reforming, polymerization, cracking?) 



Spatio-temporal Study of LNT NOx Reduction 
Selectivity (UK-CAER/Ford; Tasks 1.6, 2.1)

High OSC LNT catalyst, degreened (DG) and aged (AD):
fixed amount of NOx stored followed by regeneration using 

1500 ppm H2; 0 mm = front face of LNT; 25.4 mm = rear face • SpaciMS enables probing of 
transient spatial profiles of 
species concentrations

• Increase in temperature
results in slower propagation 
of reduction front (due to 
more effective regeneration
of storage sites and increased 
amount of NOx stored)

• Aging results in faster
propagation of reduction
front (due to elongation of 
storage  zone and decreased
total amount of NOx stored)

• Aging results in increased 
selectivity to NH3



Reactor Studies of NO/CO/H2O on   
Pt/BaO Catalyst (UH; Tasks 1.5, 2.3)
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• Results show that NH3 formation occurs by both isocyanate mechanism     
(NO + CO + H2O) and by coupled  water gas shift (CO + H2O  H2 + CO2) 
and NO+H2 and chemistry
• Major pathway depends on conditions such as temperature and NO/CO ratio
• DRIFTS & isotopic labeling studies planned

 Experiments designed 
to identify major NH3
formation mechanisms:
 NO + CO   NCO-

NCO- + H2O  NH3

 CO + H2O  H2 + CO2

NO + H2  NH3 + H2O 

 Systematic study of 
NO/CO, NO/CO/H2O, 
CO/H2O, etc. reaction 
systems



NO Oxidation on Pt/BaO:  Effect of Pt Dispersion 
& Washcoat Diffusion (UH; Tasks 1.5, 1.8)
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Steady State NO Oxidation:  Comparison 
of Experiments & Model Predictions
Feed: 500 ppm NO, 5% O2 Bal Ar, 1000 sccm

Catalyst Pt 
(wt.%)

BaO 
(wt.%)

Pt 
Dispersion 

(%)

B3 2.20 16.3 22

D3 2.48 13.0 3

D8 2.48 13.0 8

D50 2.48 13.0 50

• NO oxidation sensitive to Pt loading, Pt dispersion and temperature
• Findings being incorporated into LNT & LNT/SCR modeling efforts



NO Oxidation on Pt/BaO:  Effect of Pt 
Dispersion & Washcoat Diffusion (UH)

Catalyst f λ De (m2/s) reff

(nm)
D3 0.52±0.28 522±360 (7.3±5.0) x 10-8 1.21

D8 0.51±0.15 189±96 (1.4±0.7) x 10-7 2.33

D50 4.40±1.20 90±40 (2.8±0.2) x 10-7 4.66

reff ≈ rp- rc

B3 Base Case Parameters: 
f=1, λ = 100, reff = 3.33 nm
DeNO = 2.0x10-7 m2/s
Df,NO = 2.0x10-5 m2/s 

Results suggest that larger Pt 
particles increase intrinsic activity 
but decrease effective diffusion 
coefficient due to pore blocking 

Model estimated parameters:

f
1

C
C

kk
B3Pt,

iPt,
B3i 










=

)(rD
Dλ

effe

m=

ki = rate constant
f = activity factor
Dm = bulk gas diffusivity
rp = average pore size
rc = average Pt radius



Length of each catalyst = 2cm; 
Temperature=275 oC; GHSV=60,000h-1; 
Lean inlet: NO=500ppm,O2=5%;
Rich inlet:  NO=500ppm,H2=0.8%;
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Modeling of LNT NOx Reduction Selectivity:  
Segmented Reactor & Global Kinetics 
(UH; Tasks 1.8, 2.9)

• Model uses global LNT model of 
Bhatia et al. & global SCR model 
of  Olsson et al.

•Serial design with LNT & SCR 
sections of equal length
Catalysts:  Pt/BaO   (LNT)

Cu/ZSM-5 (SCR)

• Model predicts moderate 
increase in cycle-averaged NOx 
conversion with addition of SCR 
section

(n=1)



n=1

n=2

n=3

Conditions:  Total length = 4cm; T = 275oC ; 
GHSV=60,000hr-1;
Lean cycle (60 sec):  500ppm NO, 5% O2; 
Rich cycle (10 sec):  500ppm NO, variable H2
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Modeling of LNT NOx Reduction Selectivity:  
Segmented Reactor & Global Kinetics (UH)

Arrangement of LNT(Pt/BaO/Al2O3) and 
SCR(CuZSM5) catalysts; n is the number of 
combined LNT+SCR units. Catalysts are 
divided equally in each arrangement .

• Moderate increase in cycle-averaged 
NOx conversion by increasing the 
degree of contact of the LNT and SCR 
catalysts
• Model will be used for optimization



Dual Layer LNT/SCR Catalysts  
(UH Task 2.6)

LNT LNT + SCR
Washcoat thickness:                              Zeolite layer thickness: 
~80 µm at wall; ~290 µm at corner            ~45 µm

40-45 µm

280-290 µm

70-80 µm



Dual Layer LNT/SCR Catalysts 
(UH; Task 2.6)
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 Dual layer LNT/SCR catalyst comprises:
Bottom layer: Pt/Rh/BaO/alumina;      Top layer: Fe or Cu/ZSM-5/alumina

0.7wt.%/0.07wt.%/20wt.%                       3-3.5 wt.% (10% washcoat loading)

LNT only LNT/SCR (Fe-ZSM-5)

Initial results with dual-layer catalyst show much reduced NH3 but 
increased N2O; slight decrease in NO conversion due to undesired 
NO2 trapping by SCR layer, leading to NOx slippage



Selected Activities Planned:  4QFY11, FY12 
(Complete Phase 1 & most of 2; start Phase 3)
 LNT:

 Complete SpaciMS experiments of LNT with varying ceria & Pt loading
 Carry out model simulations of SpaciMS experiments to further elucidate NH3 formation 

in Pt/Rh/CeO2/BaO monolith
 LNT model developments

 Extend  microkinetic NSR H2 model to H2/CO/HC mixtures
 Incorporate washcoat diffusion using low-dimensional approach

 SCR:
 Complete kinetic model development for NH3 SCR on Fe & Cu zeolites; incorporate 

findings into SCR models
 Conduct in situ DRIFTS of SCR with HC & HC/NH3 mixtures

 LNT/SCR:
 Continue LNT-SCR experiments, focusing on reducing PGM content
 Continue double-layer LNT/SCR experiments:  Focus on understanding and optimization
 Carry out vehicle studies at Ford using full-scale LNT/SCR system
 LNT/SCR reactor modeling

 Incorporate latest upgrades in kinetic models
 Optimize LNT/SCR segmented architecture 
 Extend to double-layer formulations to guide experiment
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Publications & Presentations 
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Publications – Appeared
• Joshi, S., Y. Ren, M.P. Harold, and V. Balakotaiah, “Determination of Kinetics and Controlling Regimes for H2 Oxidation on 
Pt/Al2O3 Monolithic Catalyst Using High Space Velocity Experiments,” Appl. Catal. B. Environ., doi:10.1016/j.apcatb.2010.12.030 
(2011).
• Kumar, A., M.P. Harold, and V. Balakotaiah, “Estimation of Stored NOx Diffusion Coefficient in NOx Storage and Reduction,” 
I&EC Research, 49, 10334-10340 (2010). 
• Kumar, A., X. Zheng, M.P. Harold, and V. Balakotaiah, “Microkinetic Modeling of the NO + H2 System on Pt/Al2O3 Catalyst 
Using Temporal Analysis of Products ,” J. Catalysis, 279, 12–26 (2011).

– In Press
• Ji,  Y., V. Easterling, U. Graham, C. Fisk, M. Crocker, J.-S. Choi, “Effect of Aging on the NOx Storage and Regeneration 
Characteristics of Fully Formulated Lean NOx Trap Catalysts”, Appl. Catal. B, in press (2011).
• Liu, Y., M.P. Harold, and D. Luss, “Spatiotemporal Features of Pt/CeO2/Al2O3 Catalysts During Lean/Rich Cycling,” Appl. Catal. 
A. General., to appear (2011).
• Metkar, P., N. Salazar, R. Muncrief, V. Balakotaiah, and M.P. Harold, “Selective Catalytic Reduction of NO with NH3 on Iron 
Zeolite Monolithic Catalysts:  Steady-State and Transient Kinetics ,” Appl. Catal. B. Environmental, to appear (2011). 
• Wang, J., Y. Ji, V. Easterling, M. Crocker, M. Dearth, R.W. McCabe, “The Effect of Regeneration Conditions on the Selectivity of 
NOx Reduction in a Fully Formulated Lean NOx Trap Catalyst”, accepted for publication in Catal. Today (2011).
• Xu, J., M. Harold, and V. Balakotaiah, “Microkinetic Modeling of NOx Storage on Pt/BaO/Al2O3 Catalysts:  Pt Loading Effects,” 
Appl. Catal. B.  Environ., to appear (2011).

– In Review
• Wang,  J., Y. Ji, U. Graham, C.S. Spindola de Oliveira, M. Crocker, “NOx Reduction on Fully Formulated Lean NOx Trap Catalysts
Subjected to Simulated Road Aging: Insights from Steady-State Experiments”, submitted to Chin. J. Catal. (2011).

Presentations:  
• Total:   13 oral presentations (DEER, AIChE, ACS, Inter. Conf. Envir. Catal., ISCRE, CLEERS)

3 invited presentations (Chicago Catalysis Club, Michigan Catalysis Society)
9 poster presentations (AIChE, DEER, ISCRE)



Summary
 Comprehensive program combining fundamental 

catalysis, reaction engineering and vehicle testing  
 Good progress on Phase 1 & 2 tasks
 Non-NH3 SCR mechanism understood – opens up new 

avenues for coupled NH3 and HC reduction
 Conditions for NH3 generation identified from spatio-

temporal data
 Established understanding of NH3-based SCR kinetics 

for Fe- & Cu-zeolites
 Progress on using models to understand data and to 

guide future experiments
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Technical Backup Slides
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Approach:  Team Participants

Kinetic 

Data

UH

• LNT & SCR mechanism 
& kinetics (BSR3, TAP)

• LNT-SCR segmented 
performance & 
optimization (BSR4, 
engine dyno)

• LNT & SCR 
microkinetic modeling & 
parameter estimation

• LNT-SCR segmented & 
double-layer reactor 
modeling

• LNT-SCR system 
optimization & 
integration (engine dyno, 
BSR4)

BASF Catalysts

• Catalyst synthesis

• LNT & SCR catalyst 
expertise

Ford

• Desulfation & 
durability testing (BSR2, 
chassis dyno)

• LNT, SCR, LNT-SCR 
performance & 
application expertise

• LNT-SCR systems 
integration (chassis 
dyno)

CAER

• Catalyst formulation & 
characterization

• LNT ammonia 
generation (BSR1)

• LNT-SCR serial & 
double-layer (BSR)

• LNT-SCR aging (BSR)

Catalysts

Perf. 

Data

Spatio-

Temp.

Data

Industry “Know-how”

Data

Perf. 

Data

DRIFTS

Data

Reports, Publications, Presentations, Graduates Commercialization

ORNL

• Catalyst characterization

• LNT ammonia generation 
(SpaciMS)

• LNT-SCR mechanism 
(DRIFTS)

• LNT-SCR serial & double-
layer performance (SpaciMS)
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Periodic Oxidation of H2 on Pt/CeO2    
(UH; Tasks 1.5, 2.3)

27

 Systematic study of transient 
oxidation of H2 on 
Pt/CeO2/Al2O3 monolith  

 Use of infrared imaging to 
follow spatio-temporal 
distribution of temperature

Results show significant nonuniform heat 
effects along length of  monolith

Results have bearing on rich phase of NOx 
storage and reduction



Periodic Co-oxidation of H2 and CO on 
Pt/CeO2    (UH; Tasks 1.5, 2.3)
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 Periodic O2/CO (lean)+H2 (rich)
CO + ½ O2  CO2

H2 + ½ O2  H2O
 Systematic study of transient 

co-oxidation of H2 & CO on 
Pt/CeO2/Al2O3 monolith  

Results show significant enhancement of 
CO oxidation by addition of H2; suggests 
enhanced CO desorption and/or formation 
of faster pathway involving HCO 
intermediate



Project Objectives
Phase 1 Objectives:
 Elucidate the mechanism of the non-NH3 pathway for NOx 

reduction by means of bench-scale reactor, in situ DRIFTS 
reactor, and TAP reactor studies

 Map LNT selectivity to NH3 as a function of catalyst composition 
(ceria content and type) and relevant process parameters (NOx 
loading, purge duration, purge lambda and space velocity)

 Develop a microkinetic LNT model that takes into account the 
catalyst composition (storage component such as ceria and 
barium loading as well as precious metal such as Pt 
loading/dispersion) and H2, CO, and C3H6 reductants

 Develop low-dimensional models for the LNT and the coupled 
LNT-SCR unit for different catalyst architectures incorporating 
microkinetics
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Project Objectives
Phase 2 Objectives:
 Establish the chemical basis for the dependence of LNT NH3 selectivity 

on ceria content
 Determine optimum ceria type and content in model LNT catalysts to 

achieve best net NOx conversion in serial LNT-SCR catalysts
 Establish the optimal operating strategy of serial and double layer 

catalyst systems with respect to NOx conversion level and fuel penalty
 Determine the level of PGM reduction possible in the serial LNT-SCR 

catalyst system while providing equivalent performance to the 
corresponding LNT-only system

 Develop microkinetic SCR model that includes non-NH3 mechanism
 Carry out experimental optimization study of segmented LNT-SCR 

catalyst configurations
 Establish sulfur evolution on serial and double layer systems
 Perform simulations of the LNT and coupled LNT-SCR unit using the 

low-dimensional
30
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