

Development of Large Format Lithium Ion Cells with Higher Energy Density

Joon Kim, Principal Investigator Han Wu, Program Manager Erin O'Driscoll, Global R&D Director

> R&D Center, Dow Kokam May 14, 2012

ES-127

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

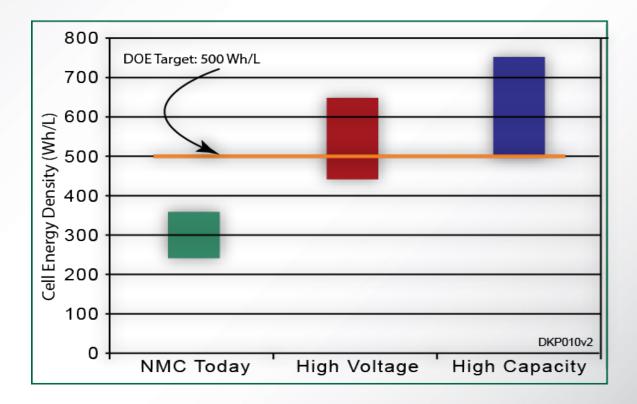
- Project start date: Oct. 1, 2011
- Project end date: Oct. 4, 2014
- Percent complete: ~2%

Budget

- Total project funding
 - DOE share: \$4,986,984
 - Dow Kokam share: \$2,431,606
- Funding received in FY11: \$1,957,460
- Funding for FY12: \$997,560

Barriers

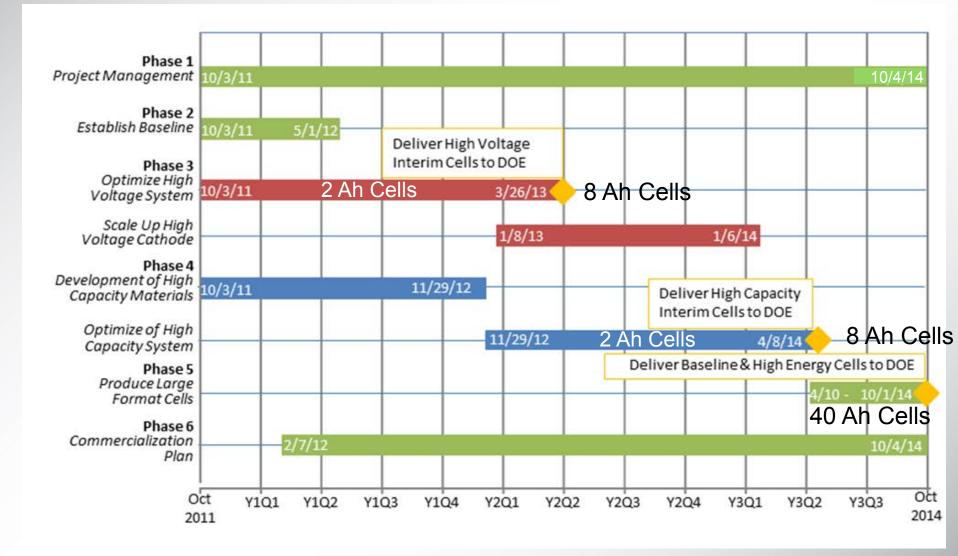
- Barriers addressed
 - Increase energy density of lithium ion battery
 - Reduce the cost
 - Maintain good cycle life


Partners

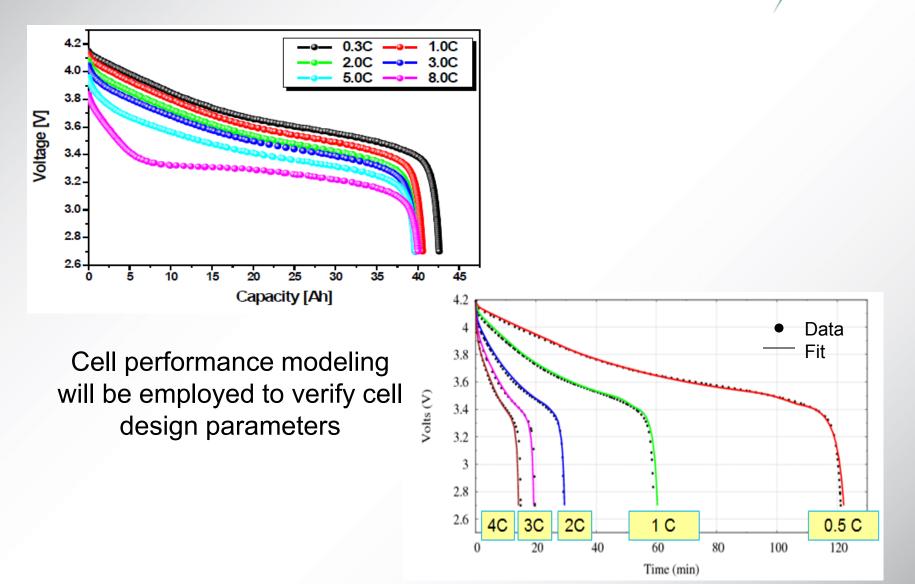
- Dow Kokam Project Lead
- Wildcat Discovery Technology Cathode Materials
- Oak Ridge National Lab Testing Services
- Dow Chemical Anode Materials

Project Objectives

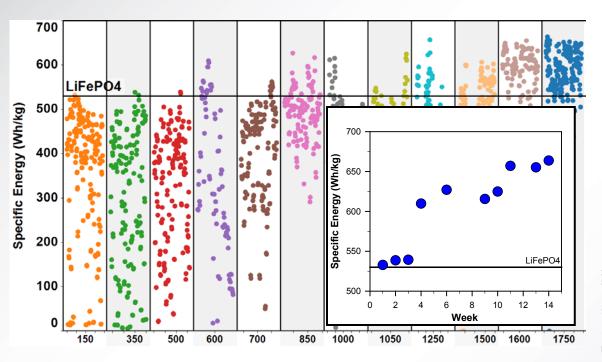
 To research, develop, and demonstrate Li-ion battery cells that are capable of achieving an energy density of >500 Wh/l and a power density of >500 W/l while maintaining comparable performance standards in terms of cycle life (300-1000 cycles at 80% depth of discharge), calendar life (5-10 years), and durable cell construction and design capable of being affordably mass produced.


Project Scope

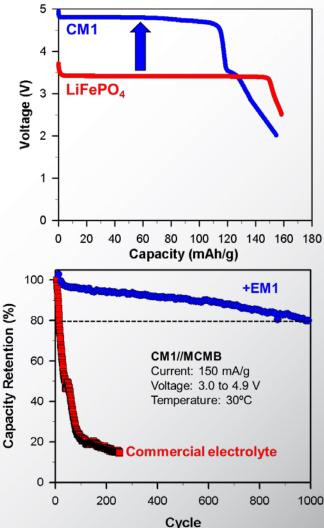
- **Phase 1:** Mobilize Resources, Implement Project Management Plan, Institute Project Controls
- **Phase 2:** Establish Model & Performance Baseline NMC/Graphite Cell, Establish Baseline Capacity For Cells, Install Equipment
- **Phase 3:** Optimize High Voltage Cell Design And Finalize Materials Development, Scale Up High Voltage Cathode Material, Produce High Energy Interim Cells, Estimate Costs
- **Phase 4:** Develop And Optimize High Capacity Materials And Cell Designs, Produce High Energy Interim Cells, Estimate Costs
- Phase 5: Produce And Deliver Large Format Baseline And High Energy Cells
- **Phase 6:** Verify Achievement Of Cost Goals And Develop Commercialization Plan



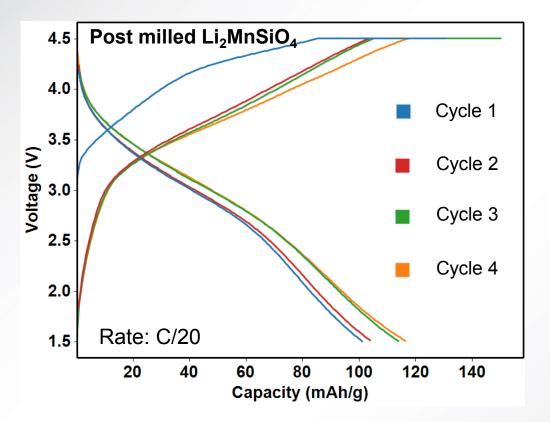
Baseline Data


Item	Value		
Rated Capacity (Ah)	40		
Nominal Voltage (V)	3.7		
Maximum Discharge Current (Amp)	320 Continuous 480 Pulsed < 10 sec		
Operating Temperature Range (C)	-20 to 60		
Weight (g)	1030		
Cell Dimensions (mm) Length X Width X Height	222.0 X 214.0 X 10.7		
Energy Density (Wh/L)	290		

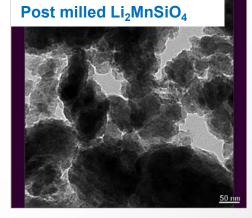
Electrochemical Modeling of Baseline Data DOW KOKAN

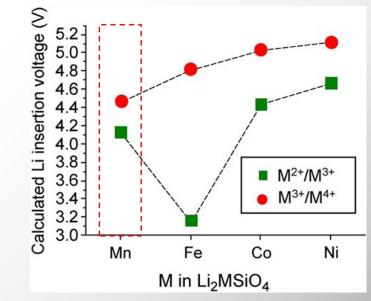

High Voltage Cathode Materials

Wildcat Discovery is to provide cathode materials based on lithium cobalt phosphate olivine structure

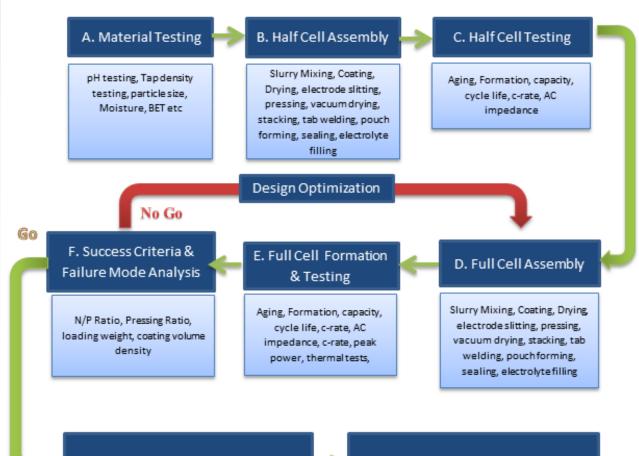


8


High Capacity Cathode Materials


Lithium Manganese Silicate (Li_2MnSiO_4) offers the potential for specific capacities as high as 330mAh/g at >4.0V in theory

Wildcat Discovery Technologies

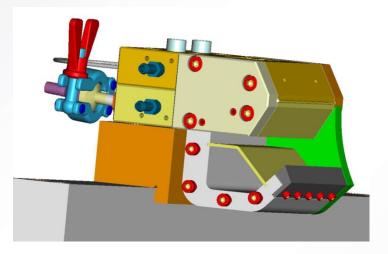

High Capacity Anode Materials

- Two silicon-base anode material have been selected, both have specific capacity above 800 mAh/g
- Physical and electrochemical characterization is underway
- Alternative lithiation process may be required to improve the first-cycle efficiency

Process Flow for Cell Development

G. Final System Design

Self-Discharge, Columbic Efficiency, thermal stability, overcharge, over discharge


H. Final Cell System validation

Optimization of Electrolyte, Electrode designs, separator etc.

Low Volume Slot Die Coating System

- A slot-die coating system with a scaled-down coating head and a precision low-volume slurry delivery system has been developed for R&D activities
- The engineered die is mounted on a commercial-scale coating line to produce high quality coatings with as little as 150 ml of slurry, rather than in liters
- Electrodes produced will be highly representative of those made under mass-production environment

Slot die coating head

Slurry delivery system

Performance Targets

	Voltage (V)	Specific Capacity (mAh/g)		Energy Density(Wh/L)		
	Nominal			64X95 mm	100X106	216X216
	Voltage	Cathode	Anode	format	mm format	mm format
Baseline NMC/Graphite	3.7	138	252	193	253	324
HV System/Graphite	4.8	150	252	290	380	480
HV System/Si-C	4.8	150	750	>360	>500	>600
HC System/Graphite	3.7	300	252	300	400	500
HC System/Si-C	3.7	300	600	>450	>600	>700

- Calculations are based on
 - Material properties
 - Internal Dow Kokam models

Status of Work

- Completed:
 - Initial screening of high capacity anode materials
 - Preliminary cell performance model developed
 - Establishment of test procedures
 - Development of high throughput synthesis and screening methodology for high capacity cathode targets
 - Validation of a low-volume slurry mixing & delivery system to simulate mass-produced electrodes
- In progress
 - Design of low volume slot die complete awaiting delivery
 - Initial scanning of alternative high capacity cathode material concept approach
 - Evaluation of high voltage cathode materials for cell design
 - Evaluation of high capacity anode materials for cell design
 - Production of baseline cells

Summary

- Dow Kokam is working to increase the energy density of its large format lithium ion cells to 500 Wh/L, by incorporating phosphate-based high voltage materials, high capacity silicon-based anodes, and high capacity cathodes
- Wildcat Discovery is a partner to supply the nextgeneration cathode materials and electrolytes
- A low-volume slot die coating system has been developed, allowing us to simulate mass-production environment in an R&D laboratory with high degree of confidence
- A cell performance model is developed that can predict cell performance data reliably