

Development of High Power Density Driveline for Vehicles

O. O. Ajayi, C. Lorenzo-Martin, A. C. Greco,

and G. R. Fenske

Argonne National Laboratory

May 16, 2012

Project ID # VSS058

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start date October 2010
- End date FY2015
- Percent complete 15%

Budget

- Total project funding
 - DOE share 470K
 - Contractor share 120K (in-kind)
- Funding
- FY 11 170K
- FY12 300K

Barriers

- Barriers addressed
 - Constant Advances in Technology
 - Computational models, design and simulation methodologies
 - Risk Aversion
 - Cost

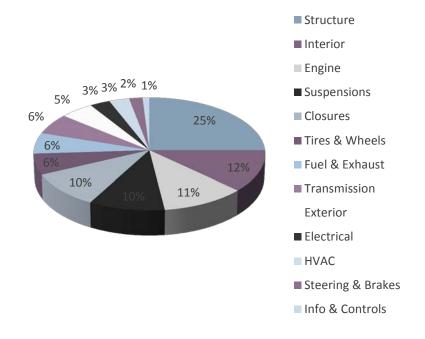
Partners

- Interactions/ collaborations
 - Wedeven Associates, Inc.
 - Afton Chemical Corp.
 - Castrol BP Corp.

Project Description and Relevance

- The main goal of DOE-VTP is the reduction of petroleum use in transportation. Such reduction is accompanied by other benefits.
 - Emissions, economic, environmental,
- Significant fuel savings possible through weight reduction in all classes of vehicles.
- Numerous analyses suggests 2 to 5 % reduction in fuel consumption by 10% reduction in vehicle weight
 - An increasingly necessary approach to fuel savings

	NEDC ICEV-G	NEDC ICEV-D
Compact Class	-2.6 %	-3.5 %
Mid-Size Class	-1.9 %	-2.7 %
suv	-2.4 %	-2.6 %


Calculated Fuel savings in gasoline and diesel vehicles

Project Objective and Relevance

 Weight reduction in vehicles must be accomplished without sacrificing safety, reliability and durability

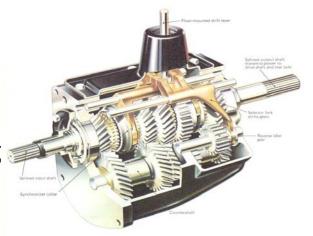
Vehicle Weight distribution

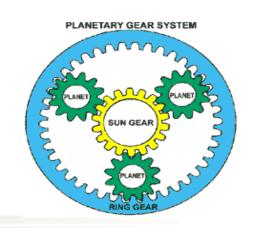
- Based on weight vehicles distribution, systems where significant weight reduction can be achieved are identified.
 - DOE currently have programs for weight reduction in structure and engine – light weight materials
- Driveline system constitutes about 20% of the vehicle's weight
 - Opportunity for weight reduction

Project Objective and Relevance

- Objective: The ultimate objective of this project is to enable significant vehicle weight reduction through the reduction in size and weight of the driveline systems such as transmission, axle.
- The driveline size reduction to be achieved by developing materials, surface and lubrication technologies for increasing the power density of the systems.
 - Can enable downsizing of power-train system without loss of performance
 - Further improvement in fuel savings

	% Improvement in Fuel Economy / % Weight Reduction EPA Combined (Metro-Highway) Drive Cycle				
	Passenge	er Vehicle	Truck		
	Base Engine	Downsized Engine	Base Engine	Downsized Engine	
Gasoline	Gasoline 0.33%		0.35%	0.47%	
Diesel	0.39%	0.63%	0.36%	0.46%	

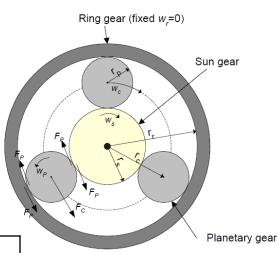

Technical Approach/Goals


 Vehicle driveline systems – transmission, axles consist of planetary gear systems and bearings.

- In order to reduce the size of the planetary gear system, high power density gearing and bearings will be required.
 - High severity of contact in gears and bearing
 - Reliability and durability issues
 - Wear; scuffing; and contact fatigue (pitting)

Goal: Develop and evaluate integrated materials, surface and lubricant technologies needed to enable HPD driveline

Technical Approach


- In order to establish materials, surface and lubricant technologies target and goals, analyses must be conducted to
 - Determine gear contact kinematics for gearbox with different levels of size reduction in a planetary gear system
 - Determine impact of new contact parameters on gearbox reliability and durability
 - Wear, scuffing and contact fatigue (pitting) life reduction
- Evaluate performance of some of the existing materials, surface (texture, coatings, treatments.....), and lubricant technologies and their combinations to mitigate reliability and durability issues of high power density (HPD) gearbox.
- Develop and evaluate appropriate surface and lubricant technologies as needed to simultaneously enhance wear, scuffing and contact fatigue life of gears and bearings.
 - Often contradictory

FY 11: Accomplishments

- Conducted gear kinematics analysis to determine impact of size reduction on contact stresses, surface velocities in planetary gear system
- Effect on gear reliability and durability evaluated
 - Scuffing, wear and contact fatigue life reduction

Size reduction	Scuffing life	Contact	Wear life	
(%)	reduction (%)	fatigue life	reduction (%)	
		reduction (%)		
5	5.2	28.9	5.2	
10	11.1	50.4	11.1	
15	17.6	66.1	17.6	
20	25.0	77.4	25.0	
25	33.3	85.3	33.3	
30	42.9	90.7	42.9	
35	53.8	94.3	53.8	
40	66.7	96.7	66.7	
45	81.8	98.1	81.8	
50	100	99.0	100	

FY 12 Accomplishment: Test methodology for gear Contact

Independent control of surface velocities allows evaluation of tribological phenomena at meshing gear teeth.

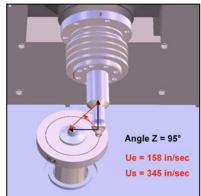
- Frictional behavior

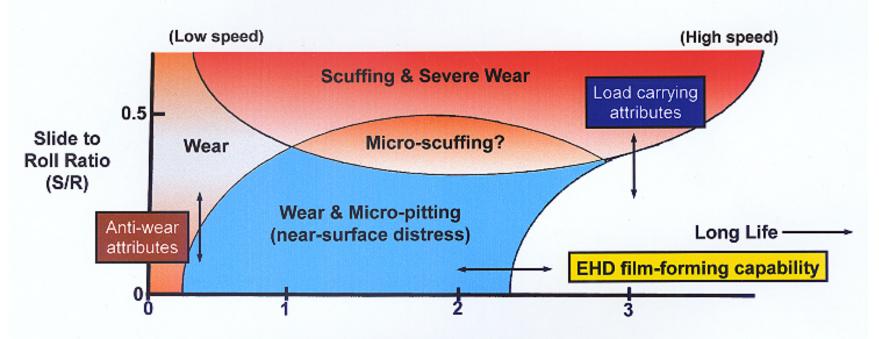
- Failure and damage mechanisms

Contact configuration: Ball vs. Disk

Contact stress: 2.1 to 2.2 GPa

75 °C Temperature: Percent Sliding: 40%





FY 12 Accomplishment: Test methodology for gear Contact

Life-limiting Surface Failure Modes

Lub film thickness / surface roughness ratio (h/σ)

Schematic of life-limiting surface failure modes (boundaries are postulated)

- Thin-film tribological coatings and lubricant formulation with anti-wear additives are two technologies commonly used for wear life improvement
 - Integration of both can be a viable pathway to achieve wear life requirement for HPD gearbox
- Evaluated friction and wear performance of coatings and lubricants

Coatings	Deposition method	Туре	Thickness (μm)	Manufacture Hardness (Hv)	Nano Hardness (GPa)	Roughness (nm)
4118-Steel	none	No layer	0	850	7	19
DLC-1	PACVD	multilayer	1.9	1200-1500	12-15	172
DLC-2	PACVD	multilayer	2.6	1000-1500	10-15	133
DLC-3	PACVD	multilayer	3.5	1500-3000	16	56
CrN	PVD	monolayer	5.0	800-1100	10	16
CrSiCN	PVD	monolayer	3.4	2700-3000	29	6.6
AlTiN	PVD	bilayer	2.4	3500	34.5	91
TiB ₂	PVD	monolayer	1.9	3650	34-37	30
TICN	PVD	monolayer	0.9	4000	39	49
TiN	PVD	monolayer	3.7	3000	29-30	87

LUBRICANT	PAO-10	PAO-4+ Additives	Synthetic A	Synthetic B
Viscosity 40°C (cSt)	71.1	15-20	233.5	132
Viscosity 100°C (cSt)	10.70	4.20	18.7	17.5
Viscosity Index	i -	T.	92	146
Flash point (°C)	272	204	235	221
Pour point (°C)	-51	-57	-15, 5	-45
Density (kg/m³) at 15.6C	837	819	905	860

Lubricants

•PAO10: synthetic basestock (no additives)

•PAO4+Additives: synthetic basestock +

2.5wt. % ZDDP+ 2.5 wt. % MoDTC

•Synthetic A: optimized for friction control

•Synthetic B: optimized for wear protection

Coatings Evaluated

Lubricants Evaluated

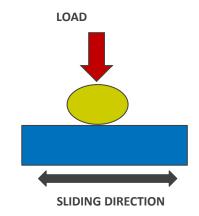
Friction and wear testing for coating and lubricants

- Reciprocating sliding contact roller-on-flat configuration
- Friction continuously monitored.

<u>Test Parameters</u>

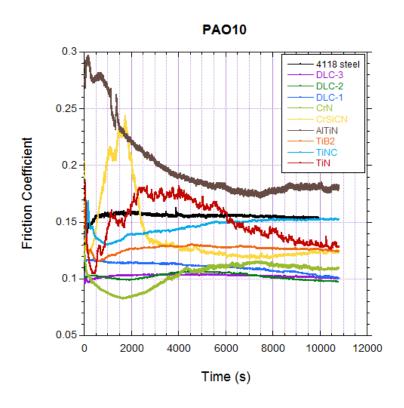
•Load: 150N σmean=0.33 Gpa. σmax=0.42 Gpa.

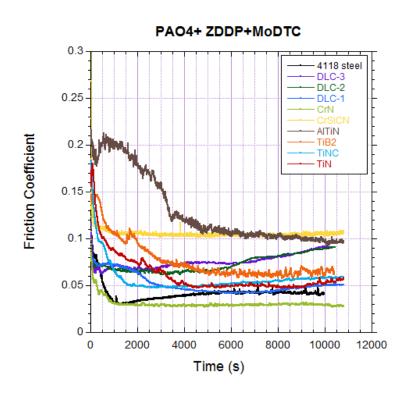
•Speed: 0.5 Hz (ave. speed: 1cm/s)


•Stroke length: 10 mm

Duration: 180 minutes

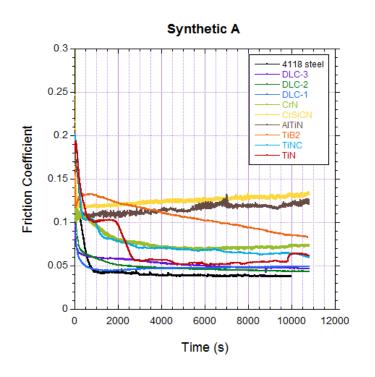
•Temperature: 100°C

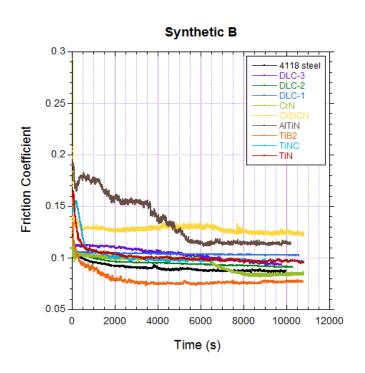

Roller-on-flat Configuration



Friction Results for tests with model lubricants

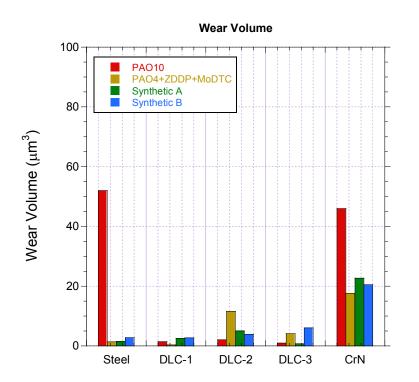
- In unformulated basestock lubricant, some coatings reduced friction
- In oils with additives, friction was higher for almost all the coatings

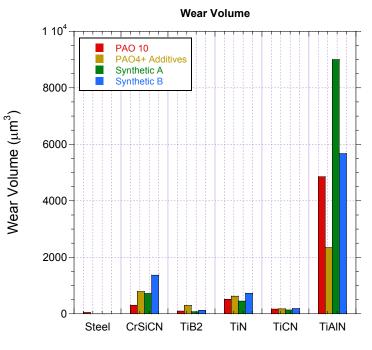




Friction Results for tests with fully formulated lubricants

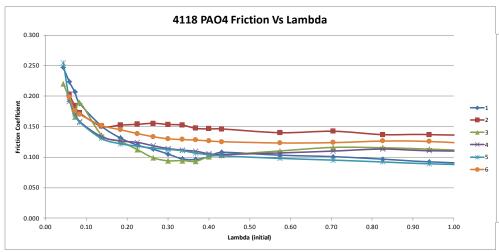
- In fully formulated lubricants, friction is higher in tests with the coatings
- Different levels of tribochemical interaction between coatings and oil additives

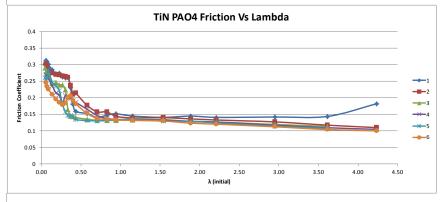


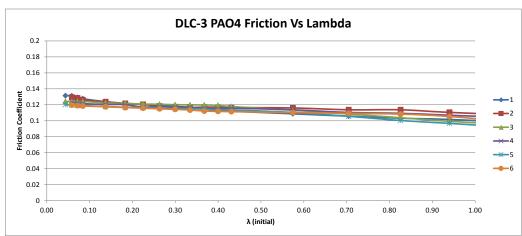

Coatings reduced the effectiveness of oil additives in terms of friction

Wear Results for tests with different lubricants and coatings

- Minimal wear observed on the flat specimens
- Wear measured on the roller specimen


Note the difference in scale of the two Figures


Coatings must be selected wisely for wear life improvement in gears



FY 12 Accomplishment: Effect of coatings on lubrication regime transition

 Transition in lubrication regime was assessed by a step speed increase protocol in unidirectional sliding

Some coatings are beneficial for fluid film lubrication, others are not. Opportunity for integration of coating and lubricant technologies for optimal tribological performance

Collaborations

Wedeven Associates, Inc. (industry):

- Development of test methodology for gear teeth contacts
- Evaluation and analysis of materials and lubricant technologies

Afton Chemical Corp. (industry):

- Development of lubricant additives for coatings to ensure adequate wear,
 scuffing and contact fatigue life
- (Possible CRADA talk between ANL and Afton in progress).

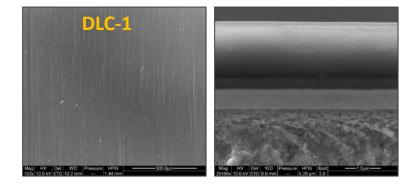
Other Potential Collaborators:

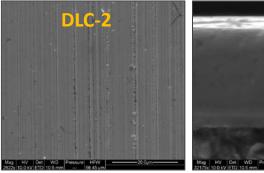
- DOE Wind Energy Program
 - Leverage efforts on wind turbine gearbox reliability projects
- Other agencies with programs and projects on gearbox technology development
- Castrol –BP corp.
- Many OEM willing to provide guidance, but not formally.
 - Keenly interested in the progress and outcome of work

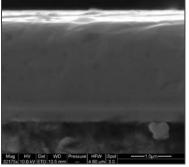
Proposed Future Work

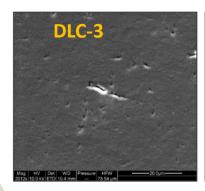
- Continue tribological performance evaluation of coating and lubricant systems with appropriate test methodologies.
 - Wear, Scuffing and Contact fatigue life.
 - Mechanism studies of tribochemical interactions between coatings and oil additives.
- In collaboration with industrial partner (WAI), identify and evaluate material attributes and technologies for HPD gearing.
- In collaboration with lubricant industrial partners, identify and/develop additives that can synergistically work with coatings in terms of wear, scuffing and contact fatigue performance, especially under severe contact conditions.
- Continue continuous dialogue and feed back from pertinent OEM

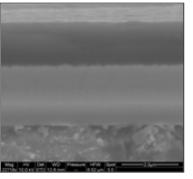
Summary

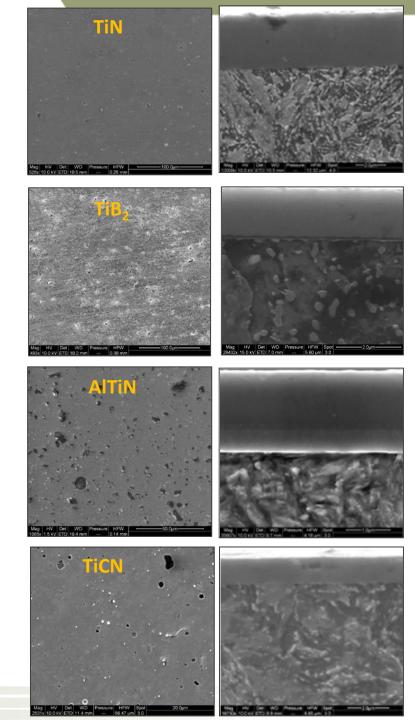

- Significant weight reduction and consequent fuel savings and emissions reduction can be achieved in all transportation vehicle platforms by reducing the size and weight of the driveline system.
 - Can enable downsizing of powertrain system, resulting in more fuel savings.
- In order to reduce the size and weight of driveline systems without loss of transmitted power, high power density gearbox will be required.
 - Analyses showed the need to significantly increase the wear, scuffing and contact fatigue life
- Appropriate test methodology was developed to adequately evaluate performance of candidate technologies under gear contact kinematics.
- Initial performance evaluation of thin-film coatings and lubricant additives show promise to simultaneously increase in wear, scuffing and contact fatigue life.
- Integrated materials, surface and lubricant technologies will be needed to enable the development of a reliable and durable high power density driveline systems for transportation vehicles.

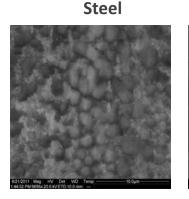

Supplemental Slides

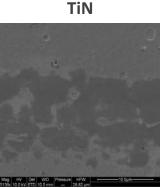

 Provides some information on the structure of coatings evaluated and assessment of tribochemical interaction between coatings and lubricant additives.



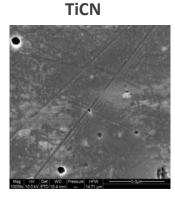

Some coatings cross-sections



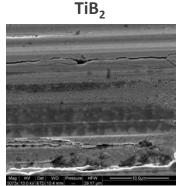




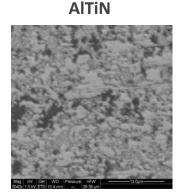
Interaction of coatings and lubricant additives


One lubricant and several coatings

Extensive tribofilm formation

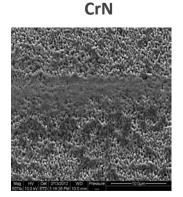


Tribofilm formation

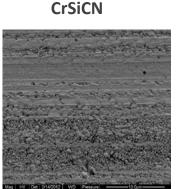


Tribofilm formation and minimal metal transfer

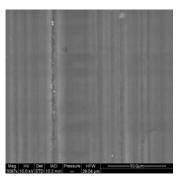
DLC-1

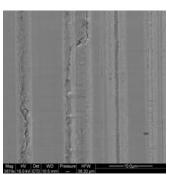


Tribofilm formation and extensive surface damage

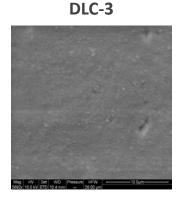


Extensive Metal transfer

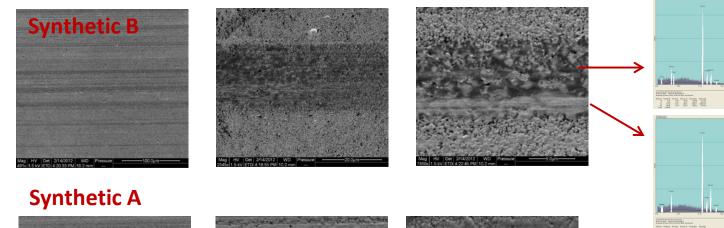

Lubricant: Synthetic A

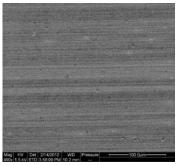

Tribofilm formation

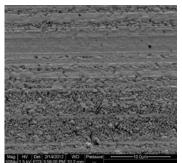
Some tribofilm formation and metal transfer

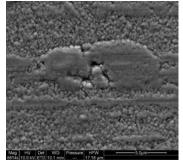


Minimal Interactionsome coating densification

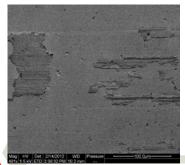

DLC-2

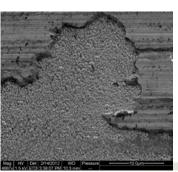

Chemical Interactioncoating damage




Minimal chemical Interaction and no damage

Interaction of coatings and lubricant additives CrSiCN coating with different lubricants

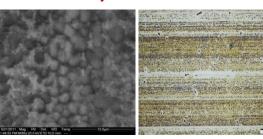


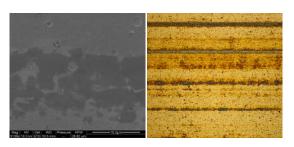


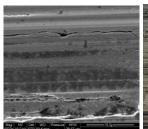


Some Metal transfer Tribofilm patches No surface damage

PAO with no additives

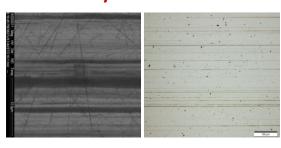

Extensive metal transfer
No tribofilm formation
Surface damage- delamination

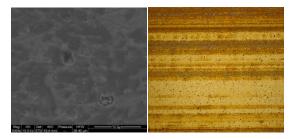

Tribofilm

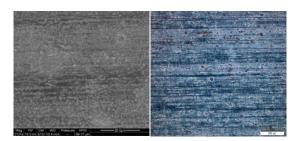

Metal transfer

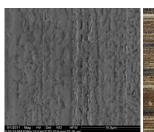
Interaction of coatings and lubricant additives Several lubricants and several coatings

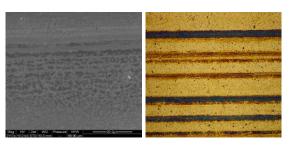
Lubricant: Synthetic A

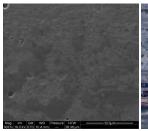


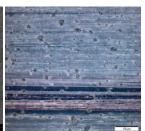





Lubricant: Synthetic B






Lubricant: PAO4+ZDDP+MoDTC

