

Development of high-capacity cathode materials with integrated structures

Principal Investigator: Sun-Ho Kang Chemical Sciences and Engineering Division Argonne National Laboratory

Annual Merit Review

DOE Vehicle Technologies Program

Washington, D.C.

May 9-13, 2011

ES019

Overview

Timeline

- Start date: FY09
- End date: On-going
- Percent complete:
 - project on-going

Budget

- Total project funding
 - 100% DOE
- Funding in FY10: \$300K
- Funding in FY11: \$400K

Barriers

- Low energy density
- Cost
- Abuse tolerance limitations

Partners

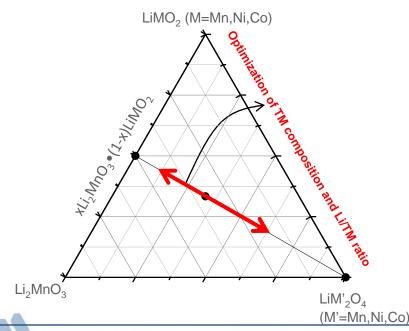
- Lead PI: Sun-Ho Kang
- Collaborators:
 - CSE, Argonne: K. Gallagher, D. Kim, M. M. Thackeray (materials design, synthesis and electrochemical characterization)
 - APS, Argonne: M. Balasubramanian (XAS)
 - MIT: C. Carlton, Y. Shao-Horn (TEM)
- Industrial partners
 - Hanwha Chemical (LiFePO₄ olivine)
 - Daejung EM (transition metal precursor)

Objective of this study

Development of cathode materials with *high-capacity, thermal stability*,

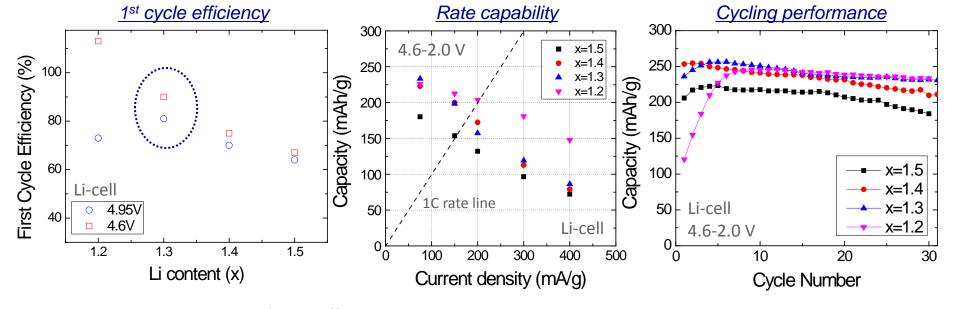
low-cost, and longevity for PHEVs

- Design and synthesis of Li- and Mn-rich oxides with integrated structures containing spinel component
 - Performance evaluation and verification of beneficial impact of the spinel component
- ➤ Identification and overcoming of performance degradation issues of highcapacity cathode materials with integrated structure
 - Information exchange and close collaboration with diagnostic study team and PHEV cell building team
- Supply of promising high-capacity cathode materials for PHEV cell build

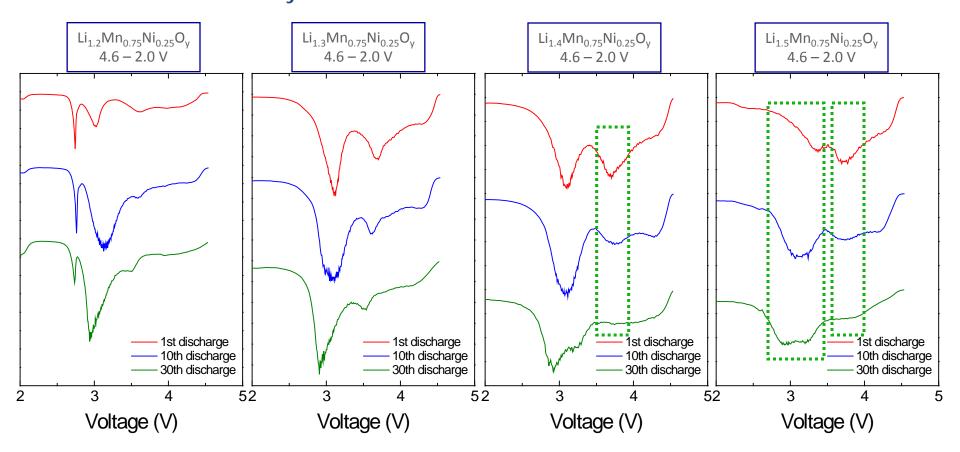

Milestones FY11

- Optimization of chemical composition on going
- Evaluation of high-capacity electrode materials in full Li-ion configuration using various anode materials – on going
- Identification of various issues related with high-capacity cathode materials – initiated
- Investigation of the materials structure after cycling by various analytical techniques – on going
- Study of physical blending of high-capacity cathode and high-power cathode materials – on going
- Study of thermal stability of high-capacity electrode materials on going

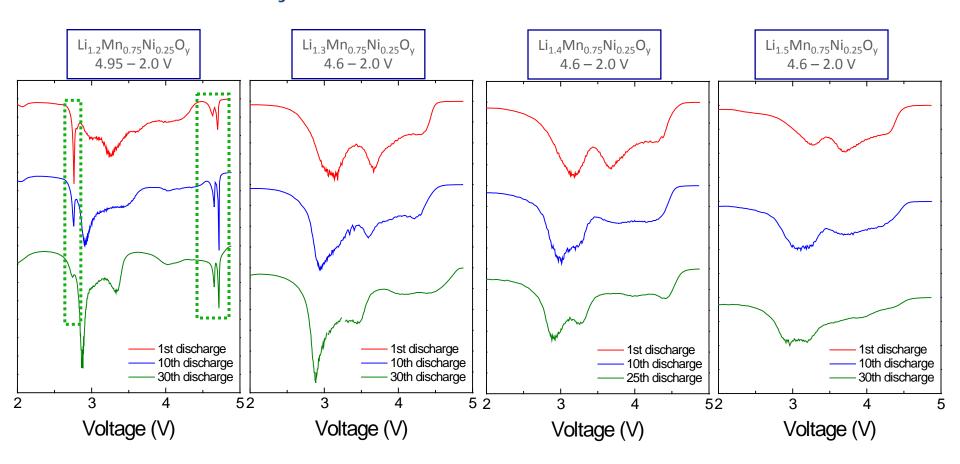
Approach


- Embedding spinel component in the 'layered-layered' composite structure
 - Spinel structure can be created in the composite structure by controlling lithium content
 - Lower lithium-to-TM ratio than in xLi_2MnO_3 •(1-x)Li MO_2
 - First cycle efficiency and rate capability are expected to improve.

- Identification of challenging issues with high-capacity layered-layered oxide materials (newly added work scope)
 - This type of electrode materials will be used in the ABR PHEV cell build.
 - Voltage profile shape changes (voltage depression) with cycling and Mn dissolution
 - Case- and analytic study
 - Study results will be implemented into the materials design and development efforts.
 - Relatively poor power performance
 - Physical blending of layered-layered oxide with other high-power electrode materials (spinel or olivine)
 - LiFePO₄ was chosen because of its low plateau voltage where the high-capacity electrode shows significantly high impedance.

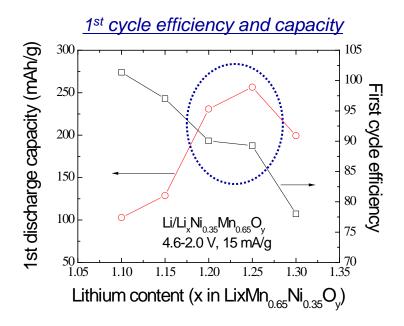

Li_xMn_{0.75}Ni_{0.25}O_y: Basic E-Chem Properties

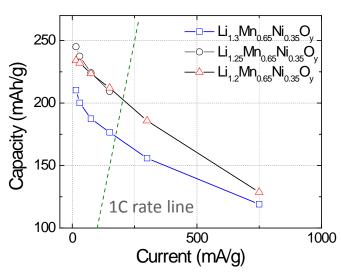
- Arr Li_xMn_{0.75}Ni_{0.25}O_y has the same Mn:Ni ratio (3:1) as 0.5Li₂MnO₃Arr0.5LiMn_{0.5}Ni_{0.5}O₂ (layered-layered) and LiMn_{1.5}Ni_{0.5}O₄ (spinel).
- Arr Li_xMn_{0.75}Ni_{0.25}O_v was synthesized using Li₂CO₃ and Mn_{0.75}Ni_{0.25}CO₃* (850 °C, 12 h, air).
- Coexistence of layered (rhombohedral, monoclinic) and spinel was confirmed by X-ray diffraction and HR-TEM (reported last year).
- For all of the cell test, 2325 separator (tri-layer, Celgard), 1.2M LiPF₆ in EC:EMC(3:7) were used.


- Improvement in the 1st cycle efficiency was achieved by incorporating spinel phase in the layered-layered matrix. (e.g., 90% for $Li_{1.3}Mn_{0.75}Ni_{0.25}O_v$ when cycled at 4.6-2.0 V)
- Some composition (x=1.2) needs initial break-in cycles to reach high capacity.
- 200 mAh/g at 1C rate was achieved for Li_{1,2}Mn_{0,75}Ni_{0,25}O_v.

$Li_xMn_{0.75}Ni_{0.25}O_y$: differential capacity plot (4.6-2.0 V)

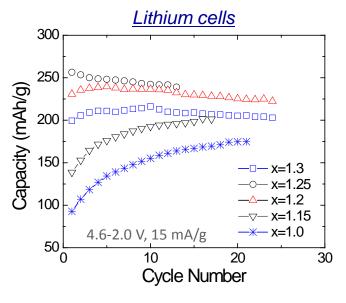
- Li_{1.5}Mn_{0.75}Ni_{0.25}O_y (or alternatively, 0.5Li₂MnO₃•0.5LiMn_{0.5}Ni_{0.5}O₂, i.e., spinel-free composition) shows significant dQ/dV change with cycle (dotted box regions), which corresponds to significant voltage shape change (voltage suppression).
- With decreasing Li content (or increasing spinel content), the less change in the dQ/dV plots is observed, indicating spinel component provides structural stability upon cycling.

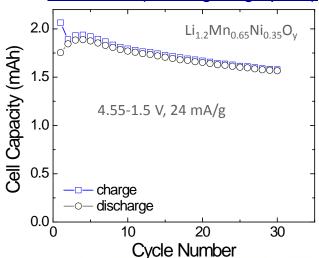

$Li_xMn_{0.75}Ni_{0.25}O_y$: differential capacity plot (4.95-2.0 V)


- All of the cells exhibit more significant change in the dQ/dV plots when cycled up to 4.95 V.
- Interestingly, the two dQ/dV peaks at ~4.8 V of $\text{Li}_{1.2}\text{Mn}_{0.75}\text{Ni}_{0.25}\text{O}_{\text{y}}$ electrode was practically not affected while the ~2.7 V peak almost disappeared by the high-voltage cycling. Those dQ/dV peaks are signature of 'LiMn_{1.5}Ni_{0.5}O₄' spinel. \Rightarrow Needs to be correlated with structural change
- As in the 4.6-2.0 V cycling, $Li_{1.3}Mn_{0.75}Ni_{0.25}O_v$ material shows the least change.

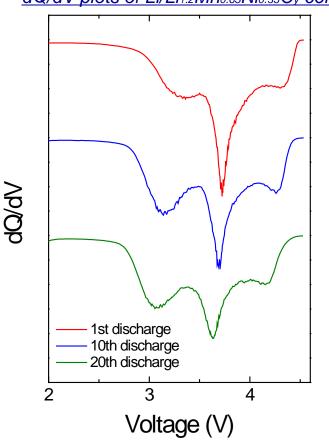
Li_xMn_{0.65}Ni_{0.35}O_y: 1st cycle efficiency and rate

- ❖ To enhance structural stability during cycling, higher Ni content (Mn:Ni=65:35) has been examined. In this case, Li_{1.3}Mn_{0.65}Ni_{0.35}O_{2.3} is the spinel-free, layered-layered composition (0.3Li₂MnO₃•0.7LiMn_{0.5}Ni_{0.5}O₂ in two-component notation).
- Li_xMn_{0.65}Ni_{0.35}O_y has been synthesized using Li₂CO₃ and Mn_{0.65}Ni_{0.35}C₂O₄•2H₂O* (850 °C, 12 h, air).

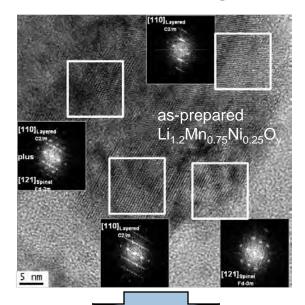

Rate capability

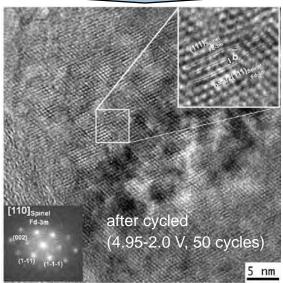

- Similar to the $Li_xMn_{0.75}Ni_{0.25}O_y$ case, the 1st cycle efficiency and rate performance were enhanced by creating spinel component in the layered-layered matrix.
- Based on the 1st cycle efficiency and rate capability, we chose $Li_{1.2}Mn_{0.65}Ni_{0.35}O_y$ and $Li_{1.25}Mn_{0.65}Ni_{0.35}O_y$ for further study.

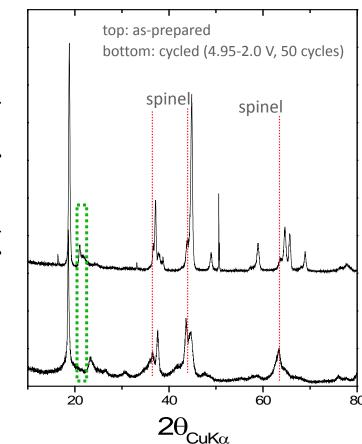
*coprecipitated in-house


Li_xMn_{0.65}Ni_{0.35}O_y: Cycling performance

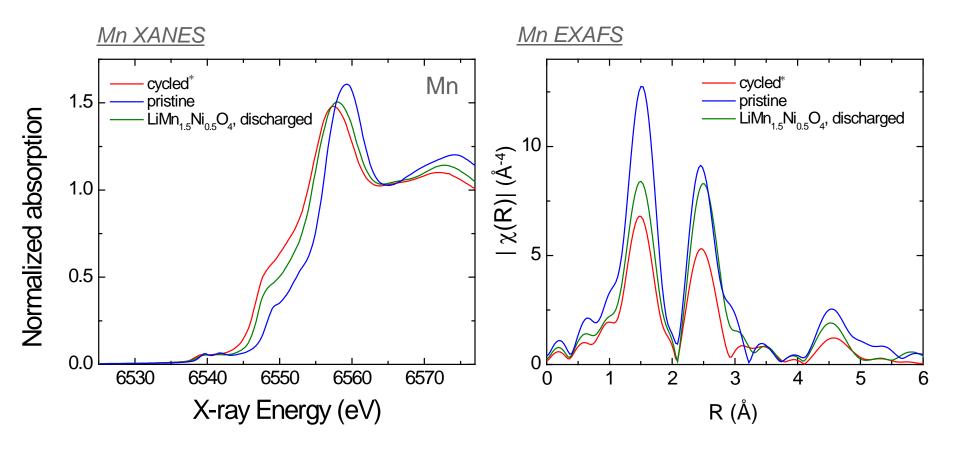
Li-ion cells (vs. Mag-10 graphite)



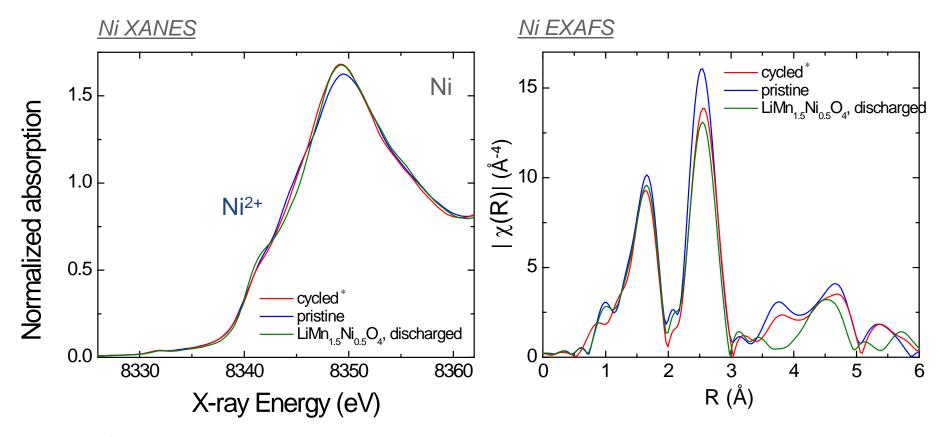

dQ/dV plots of Li/Li1.2Mn0.65Ni0.35Oy cell


- Cycling performance evaluation is on going.
 - Various anode materials will be coupled.
- dQ/dV plot seems to be relatively stable behavior.

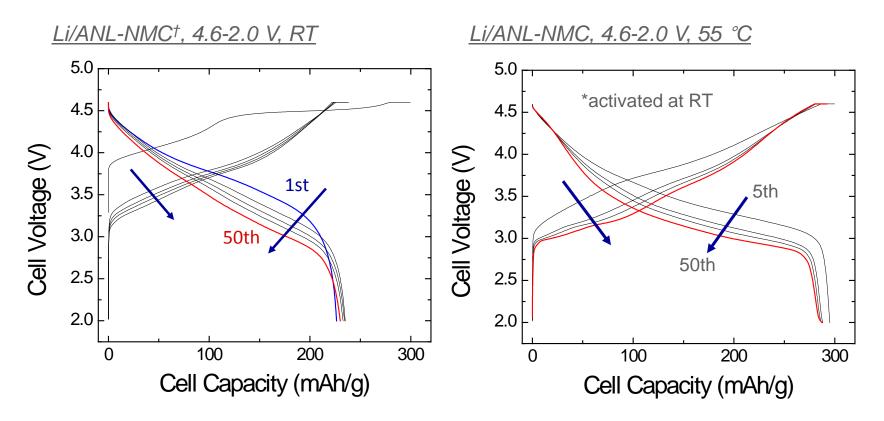
Structural Study - TEM and XRD



- ❖ Significant increase of spinel content in the cycled electrode
- Disappearance of cation ordering peak at ~22 °θ (Li₂MnO₃ activation)
- Dislocations and disordered structure observed from the cycled material

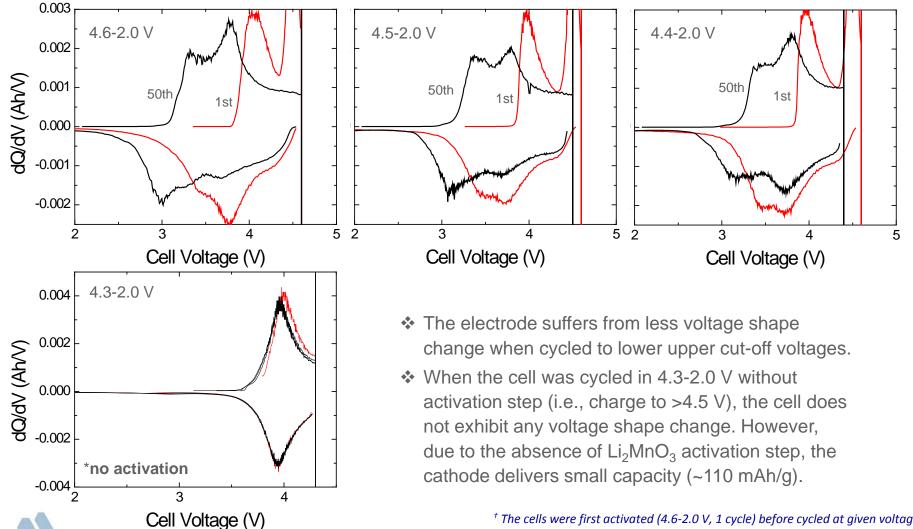

Structural Study - X-ray absorption spectroscopy

❖ Mn shows large reduction (close to Mn³+) after 50 cycles in the fully discharged state. The cycled (and discharged) material is similar to the discharged spinel sample.

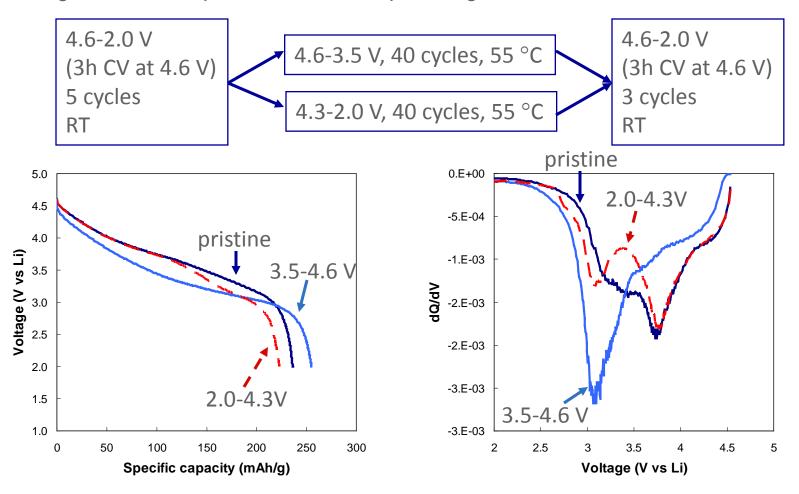


Structural Study - X-ray absorption spectroscopy

- Ni environment shows little change with cycling, consistent with the little change in ~4.8 V dQ/dV peaks with cycling (shown in slide p.8)
- Ni is predominantly Ni²⁺, and remains fully reduced after 50 cycles. When compared to the lithiated spinel, the local structure is very different, consistent with the large local Ni-O-Ni rocksalt-like correlations present in the sample.

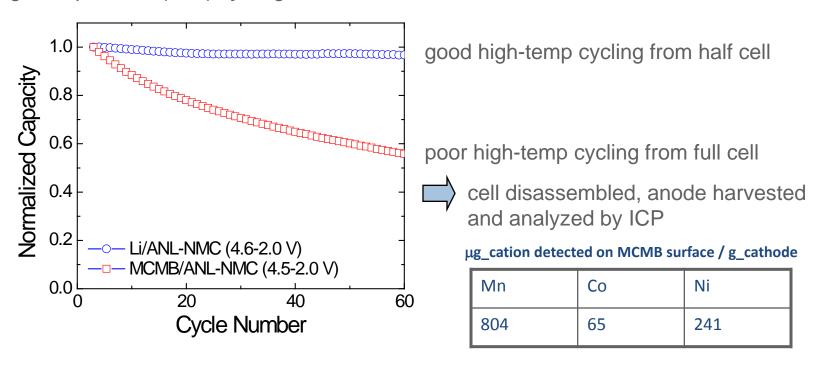

Issues with High-Capacity Layered-Layered Cathode Materials: Voltage shape change

- The layered-layered cathode material exhibits good capacity retention but a significant voltage suppression with cycling, which is more severe during hightemperature cycling.
- This is not just <u>energy density</u> issue, but also <u>battery management</u> issue.


Issues with High-Capacity Layered-Layered Cathode Materials: Voltage shape change

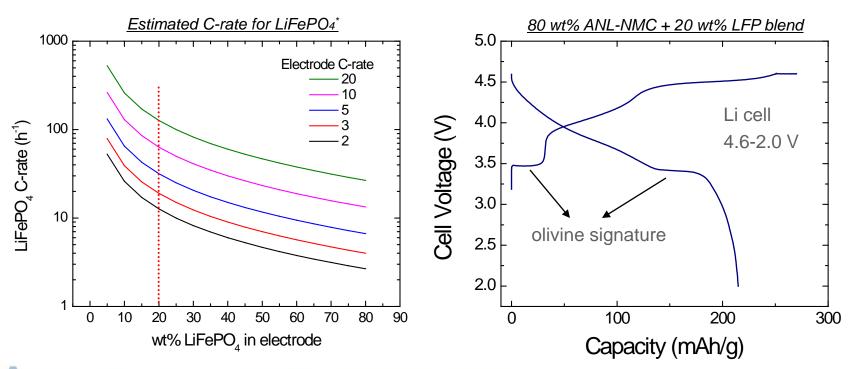
dQ/dV plots of Li/ANL-NMC cells cycled in various voltage windowst

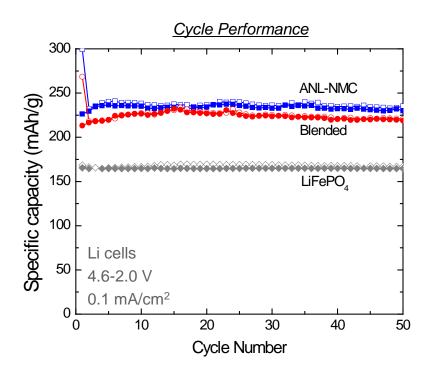
Issues with High-Capacity Layered-Layered Cathode Materials: Voltage shape change

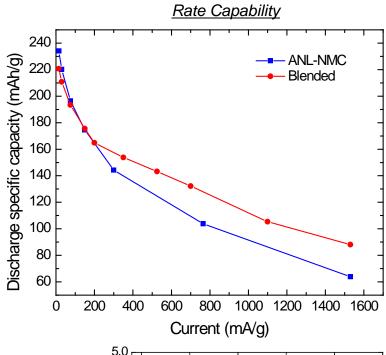

Voltage windows responsible for the shape change

❖ Cycling at higher potential window has a bigger impact on the growth of 3-V peak and disappearance of 3.7-V peak.

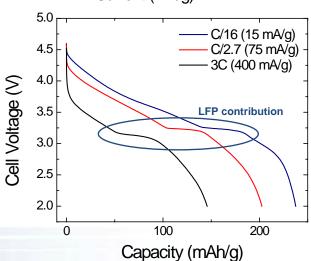
Issues with High-Capacity Layered-Layered Cathode Materials: Mn dissolution


High-temperature (55°) cycling

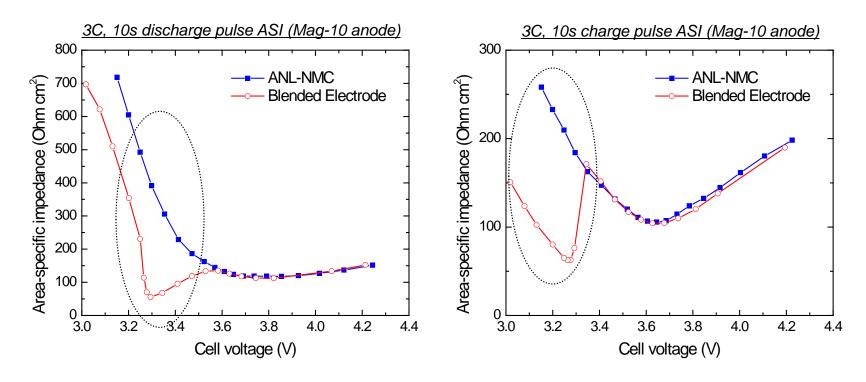

- *Possible mechanism of full cell capacity fading (similar to Mn-spinel)
 - Dissolution of TM ions from ANL-NMC into the electrolyte → reduction of TM on the graphite surface → side reaction on the graphite surface consuming lithium ions (most likely caused by Mn) → reduction of cycleable lithium in the cell
- Surface protection and/or electrolyte additives might suppress TM dissolution and/or side reaction on the graphite surface.


Improving Pulse Power Performance of High-Capacity Layered-Layered Cathode Materials

- One of the important requirement of a PHEV cathode is reasonable power performance at charge-sustaining mode (low SOC). Layered-layered materials suffer from poor power performance especially at low SOC.
- To improve the pulse power performance at low SOC, the ANL-NMC was blended with LiFePO₄. Active voltage window for LiFePO₄ (\leq 3.5 V) is where the ANL-NMC exhibits quite poor impedance characteristics.



Improving Pulse Power Performance of High-Capacity Layered-Layered Cathode Materials



- All half cells (with ANL-NMC, LiFePO₄, or blended electrode) show good cycling performance.
- The blended electrode shows smaller capacity than ANL-NMC electrode at low current due to lower ANL-NMC content in the electrode (by 20 wt%), but at high current (≥100 mA/g) the blended electrode delivers higher capacity (by LFP contribution).

Improving Pulse Power Performance of High-Capacity Layered-Layered Cathode Materials

- Impedance characteristic of the ANL-NMC needs to be improved.
- Blending with LiFePO₄ results in significant improvement of ASI measured by 3C, 10s pulse at low cell voltage.
 - A good way to enhance power performance at the charge-sustaining mode for PHEV cell with a high-capacity layered-layered cathode material

Future work

- Composition optimization
 - Improvement of cycling performance
 - Close collaboration with other ABR participants as well as with industrial partners (good TM precursor)
 - Selection of two most promising chemistries and focusing on the battery performance (and its improvement) of the selected cathode materials
- Identification and evaluation of various electrochemical couples
 - Carbonaceous anodes
 - Advanced anode materials through collaboration with other ABR or BATT team
 - Full cell performance characterization
- Evaluation of thermal safety characteristics
- Further optimization and characterization of blended electrode of energy-providing material (e.g., layered-layered) and power-supplying material (e.g., LiFePO₄)

Summary

- The objective of this work is to develop cathode materials with high-capacity, thermal stability, low cost, and longevity. The cathode chemistry is based on Liand Mn-rich oxide with integrated structures.
- Our approach to achieve the objective and technical accomplishments are:
 - Creating integrated spinel component in layered-layered matrix
 - The first cycle efficiency of ~90 %
 - Good rate capability (>200 mAh/g at 1C rate)
 - Excellent structural analysis utilizing TEM and XAS
 - Identifying and understanding voltage depression and Mn dissolution issues for layeredlayered composite cathode materials
 - Physical blending of high-capacity material (layered-layered oxide) with high-power material (LiFePO₄ olivine)
 - Significant improved pulse power characteristics at low SOC without compromising the high capacity
- In FY12, two most promising composition will be selected and focused study will be carried out. At the same time, industrial partner will be identified as a high-quality TM precursor supplier for scale-up purpose (enough to deliver to ABR cell building group).

Acknowledgment

Support for this work from DOE-EERE, Office of Vehicle Technologies is gratefully acknowledged

- David Howell
- Peter Faguy