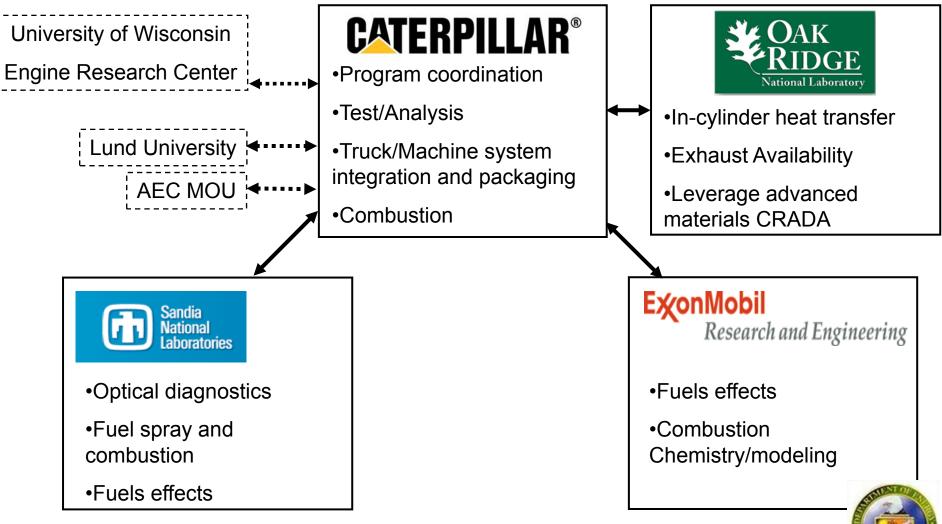


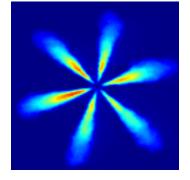
Development of Enabling Technologies for High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines

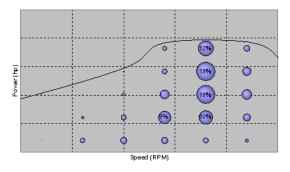

Program Manager: Scott Fiveland

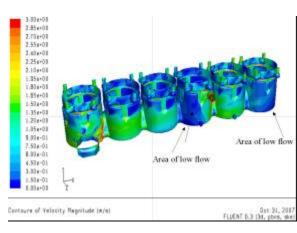
DOE Merit Review Washington, D.C. May 18th, 2009 DOE Contract: **DE-FC26-05NT42412** DEDOE Technology Manager: Roland Gravel NETL Project Manager: Carl Maronde Project ID: ace_38_fiveland

Note: This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Collaborations






Outline

- Program Overview/Purpose
- 2008/2009 Focus Areas
- Technical Approach
- 2008 Program tasks
- 2009 Planned Program Tasks

Program Overview

Timeline

- Start: 8/01/2005
- Finish: 6/30/2009

<u>Budget</u>

- Total Project Funding (Phase 1,2)
 - DOE \$10,309K
 - Contractor \$10,309 (Phase 1,2)
- Funding received FY08 & FY09
 - DOE ~ \$2,700K¹
 - Contractor ~ \$2,700K

Partners

- Exxon-Mobil
- Sandia National Laboratory
- Oak Ridge National Laboratory Caterpillar Non-Confidential

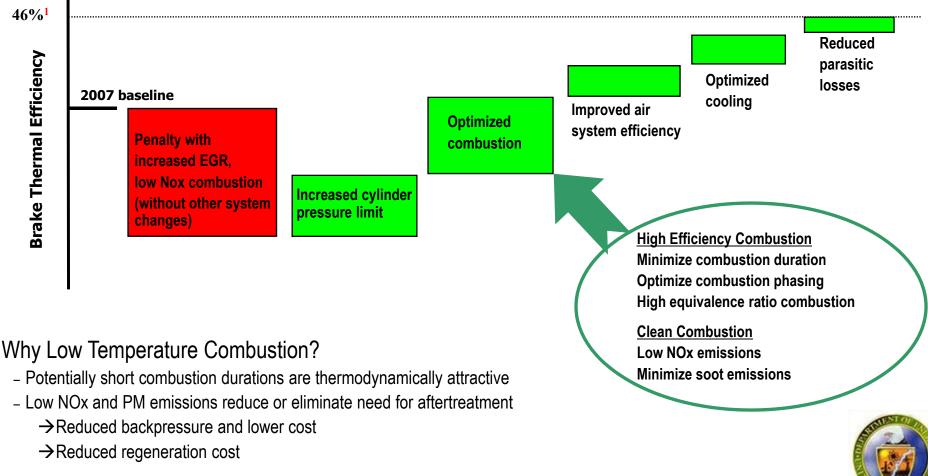
Technical Barriers

- Mixture Preparation / Air Utilization
 - Excessive HC,CO and soot emissions with HCCI – type combustion
 - Excessive soot at high BMEP ($\emptyset > 0.8$)

High heat rejection

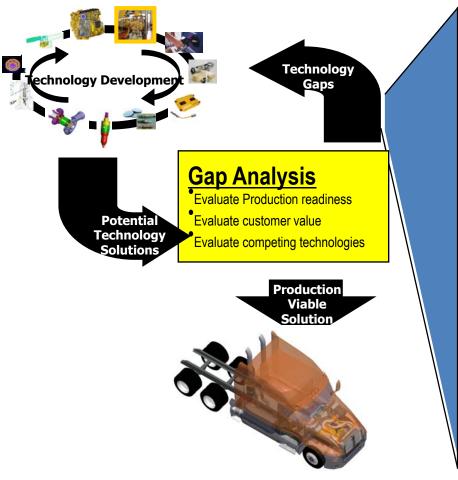
- Increased EGR requirements
- Increased in-cylinder heat transfer with HCCI
- Power density / load capability
 - Cylinder pressure and rise rate limits
 - High equivalence ratio at high BMEP

Robust combustion control


- Transient control of HCCI (PCCI)
- Combustion feedback sensors
- Combustion mode switching

¹ As per FY2008 & 2009 plan

Purpose of Work


 Assess production viable low temperature combustion technology building blocks to enable a low emissions and high thermal efficiency (46%¹).

1 As Per Solicitation DOE Contract: **DE-FC26-05NT42412**

Technology Barriers

 Assess production viable low temperature combustion technology building blocks to enable a low emissions and high thermal efficiency (46%¹).

Mixture Preparation / Air Utilization

- Excessive HC,CO and soot emissions with HCCI – type combustion
- Excessive soot at high BMEP ($\emptyset > 0.8$)

High heat rejection

- Increased EGR requirements
- Increased in-cylinder heat transfer with HCCI

• Power density / load capability

- Cylinder pressure and rise rate limits
- High equivalence ratio at high BMEP

Robust combustion control

- Transient control of HCCI
- Combustion feedback sensors
- Combustion mode switching

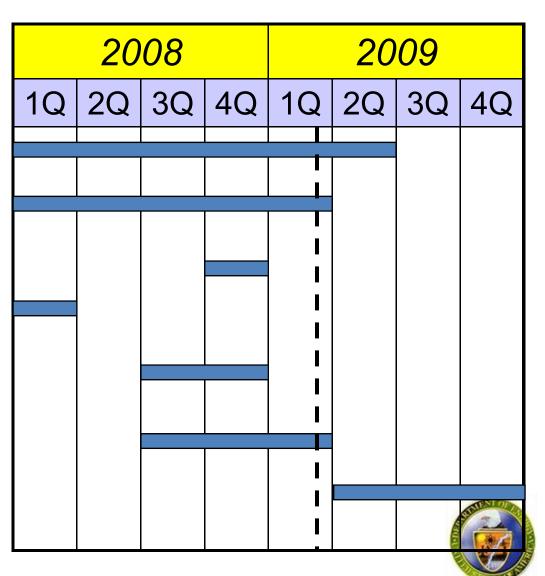
•

Key Focus Areas

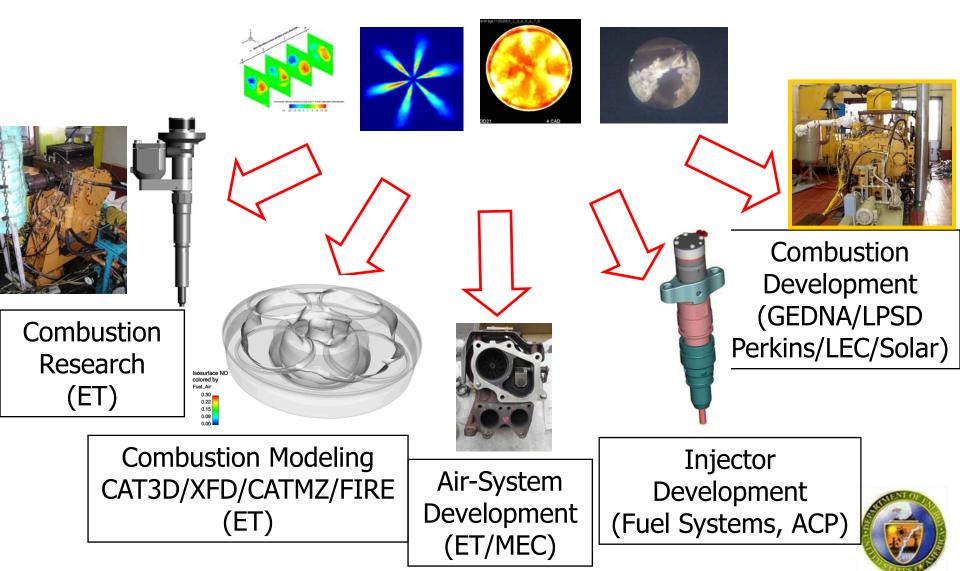
Combustion & Power Density

- Characterize the HCCI combustion process & technology gaps using experiments & simulation (gap identification)
- Investigate the use of fuel blending to improve the load range
- Visualize early injection events in order to optimize the spray injection
- Assess lifted-flame combustion (local premixing) as an emissions building block

Control


- Develop algorithms to enable combustion mode switching
- Heat Rejection
 - Reduce engine heat rejection

2008/2009 HECC Milestones (1 of 2)


Injector orifice geometry investigation

- Precision cooling (project suspended before completion)
- VCR bearing redesign
- C15 PCCI demonstration
- PCCI combustion modeling, spray and wall impingement model improvements (project suspended before completion)
- Sandia injector upgrade
- Lifted flame combustion development

Technical Approach

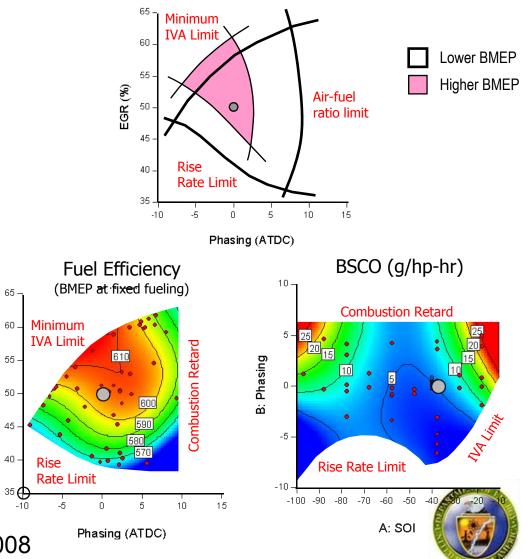
Single-Cylinder Engine Testing

65 -

60 _

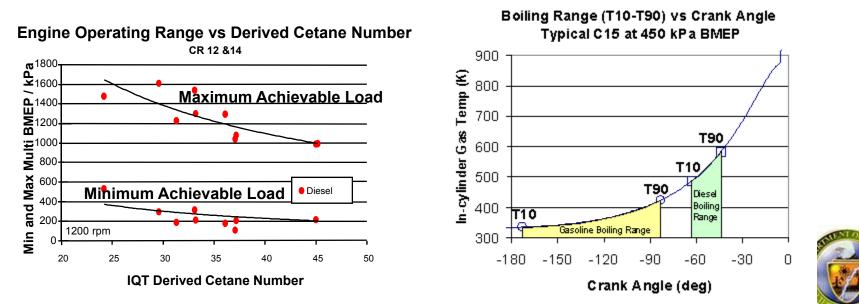
55 -

50 -


45

40 -

EGR (%)


- Objective:
 - Quantify the fundamental relationships between control parameters and engine performance and emissions
 - \rightarrow Input to 0-d combustion model for engine system simulation and basis for model based control
 - \rightarrow Define optimal combustion mode for improved thermal efficiency
- Approach:
 - Extensive exploration of key control parameters
 - Generated response surfaces to key control parameters
- Accomplishments:
 - Established the effect of key control parameters on engine operating limits
 - EGR, IVA etc.
 - Demonstrated 4% BSFC improvement @ BMEP < 750kPa

Background work, FY 2007 & Early 2008

PCCI Combustion – Fuel Blending Technologies to Increase HCCI/PCCI Power Density & Load Capability

- Fuels
 - Load range is affected by cetane number
 - High volatility fuel increases the injection window (mixing)
 - No commercially available fuel meets all requirements
 - Investigating diesel / gasoline fuel blends

Optical Engine Testing with Sandia National Laboratories

Overall Objective: Use Optical Engine to study early injection wall impingement.

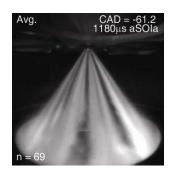
- 2008/2009 Objective:
 - Upgrade to a fuel system representative of current production
 - Enable higher injection pressure capability
 - Enable multiple injection capability
- Approach:
 - Upgrade to Caterpillar Common Rail fuel injector
- Accomplishments:
 - New fuel injectors and ECM delivered to SNL
 - Cylinder head modifications complete
 - High pressure fuel supply upgrade inprocess

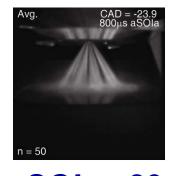
Caterpillar Non-Confidential

CATERPILLAR®

Sandia National

FY 2008


Effect of Early Injections on Piston Impingement


	Injection Timing [°ATDC]	Injection Pressure [MPa]	F [-]	EGR [%]	Intake Temp. [°C]	Load gIMEP [bar]	Boost [bar]
Baseline Condition	-39.5	142	0.39	50	42	4.82	1.418
Injection Timing Sweep	-69.5 to -29.5	142	0.39	46.6 to 50.2	42	4.82	1.418
Injection Pressure Sween	-36.3 to .39 5	47, 95, 142	0.39	50	42	4.82	1.418
Equivalence Ratio and Boost Sweep	-39.5	142	0.24 to 0.58	50	42	4.82	<u>2.060 то</u> 1.132
EGR and Boost Sweep	-39.5	142	0.39	30 to 70	42	4.82	1.188 to 1.949
Intake Temperature and Boost Sweep	-39.5	142	0.39	50	32 to 62	4.82	1.373 to 1.508
Intake Temperature and Equivalence Ratio	-39.5	142	0.39 to 0.41	50	32 to 62	4.82	1.418
Load and Boost Sweep	-39.5	142	0.39	50	42	3.82 to 5.83	1.203 to 1.629

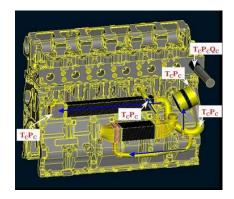
SANDIA Lab, C. Mueller

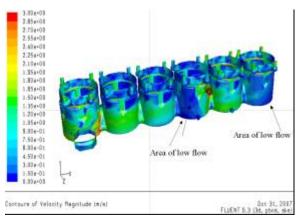
C. Mueller

SOI = -69.5°ATDC SOI = -29.5°ATDC Early Injections Lead to Liquid Fuel Impinging on Piston Top

Variable Compression Ratio Engine

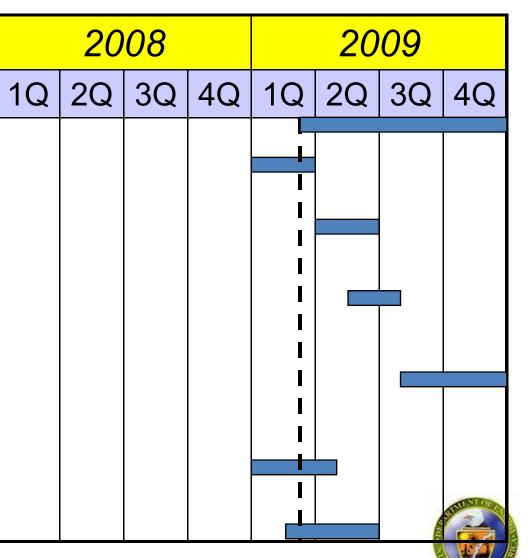
- Variable Compression Ratio
 - Effective means of extending load range at the expense of compression ratio
 - Optimal phasing does not outweigh expansion ratio loss to reach full load
 - May be adequate if using HCCI/PCCI only for NOx emissions control
 - Does not address diesel liquid fuel impingement
- Objective:
 - Reduce parasitic losses associated with VCR engine
 - Design a more robust eccentric crank bearing system
- Approach:
 - Redesigned crank carrier bearing system
 - Conducted FEA and rolling element analysis
- Accomplishments:
 - Analysis predicts acceptable bearing life with new design


VCR - US Patent Application 2006/0112911

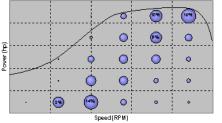

FY 2008

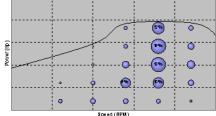
Precision Cooling

- Reduced heat rejection in the cylinder block
- Increased enthalpy in the exhaust gas
- Reduced thermal stress in the engine block
- Objective:
 - Develop a method to analyze precision cooling
 - Apply method to predict baseline and evaluate alternative configurations
- Approach:
 - Combination of 1D simulation & CFD
 - Application of FEA
- Accomplishments:
 - Baseline analysis completed & correlated with experiments (pressure drop)
 - Thermal data correlation → 1st pass (currently on hold)

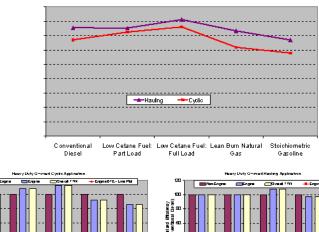


2009 HECC Milestones (2 of 2)

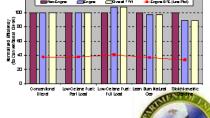

- Lifted flame combustion development Literature review: transient control of PCCI
- Steady state engine tests for transient control model development
- Transient control strategies development & hardware procurement
- Multi-cylinder engine testing for demonstration of transient control
- Wells to wheels analysis for heavy duty applications
- On-Engine testing of fuel blends



Tank-to-Wheels Analysis


Objective:

Application Histograms



Tank-to-Wheel Efficiency

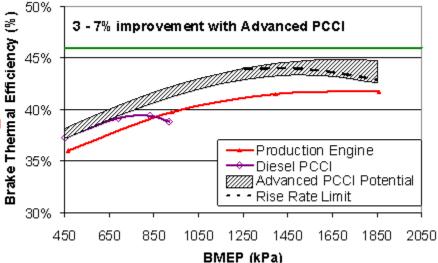
applications – Quantify ben regimes as e

 Quantify benefits of alternate combustion regimes as enabled by alternative fuels for heavy duty applications

combustion processes for heavy duty

Energy audit comparing SI, CI and HCCI/PCCI

• Approach:


- Detailed system wide and individual component wide analysis of energy flow
- Engine system simulation combined with field data to evaluate effect of different heavy duty application work-cycles on the powertrain efficiency

Accomplishments:

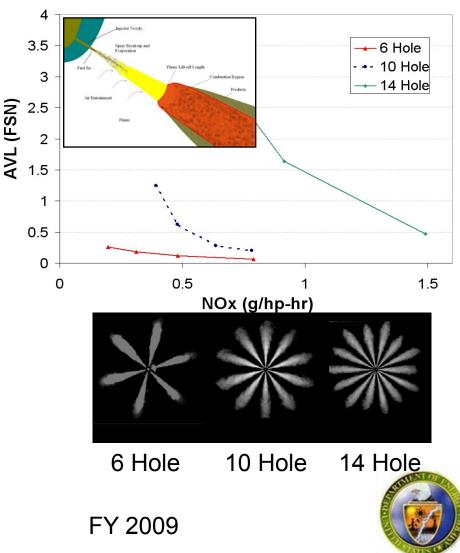
- Completed energy audit on two different offroad heavy duty applications
- Completed comparison of the impact of alternate combustion regimes on efficiency in heavy duty applications
- Identified opportunities for applying alternate combustion regimes to improve efficiency of heavy duty applications

Gasoline / Diesel Fuel Blend Testing

- Objective:
 - Assess ability of 'modified' fuel properties to increase load range
 - Improve thermal efficiency by increasing the load range of PCCI combustion
 - Reduce soot emissions in diffusion combustion regime
- Approach:
 - Test multiple gasoline / diesel fuel blends with a range of derived cetane number on singlecylinder test engine.
 - Characterize impact on combusting spray using optical techniques in high-temperature spray vessel
- Accomplishment:
 - Testing currently in-progress (March April)
 - Results currently being processed

C15 Engine Simulation Results

FY 2009

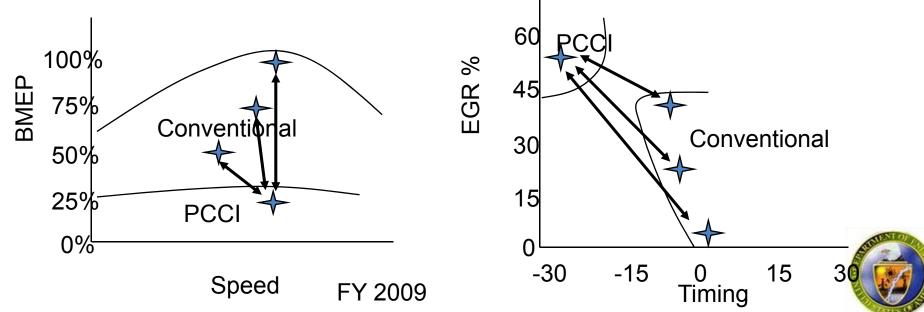

"Lifted Flame" Combustion

- 2008 demonstrated order of magnitude soot reduction with 6-hole nozzle, but nozzle lacked flow capacity for a 15 L engine
- Soot emissions increased with increased and increased with increased and increased with increased and increased and
- Objective:
 - Understand soot emissions increase with increasing number of holes
 - Maximize the low soot benefit of "lifted flame" combustion through optimization of injector nozzle and combustion chamber geometry

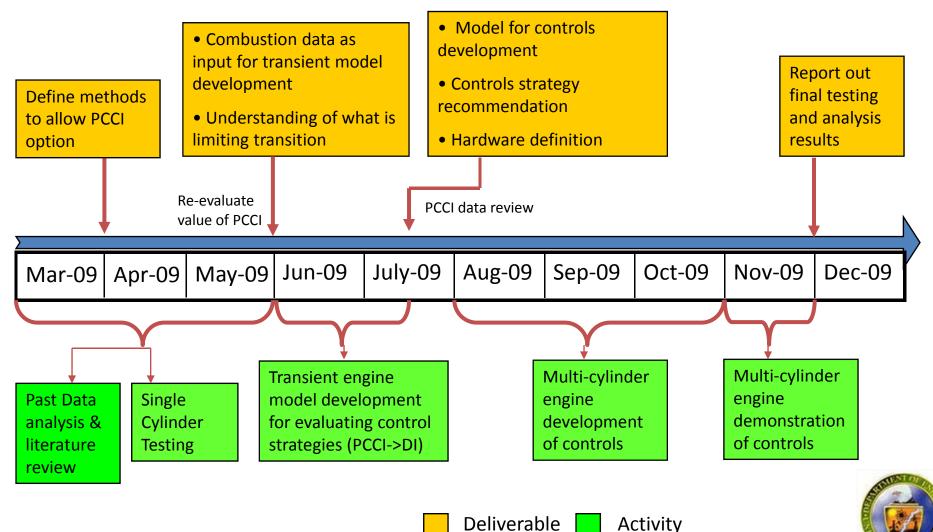
• Approach:

- Investigate plume to- plume interaction of a combusting multi-plume spray using hightemperature spray vessel (Jun – Aug)
- Optimize injector nozzle and combustion chamber through combination of combustion simulation and single cylinder engine testing. (Sept – Dec.)

Effect of Increasing Number of Plumes on Emissions Performance


Combustion Mode Transition

Expectations


- •No perceivable torque blip
- Minimal emissions spike (limit to current transient spikes)
- Minimal changes in high load performance (?)
- Minimal cost and complexity impact (?)

Challenges

- Adding / removing EGR quickly (if resolved can support the Tier 4 Interim challenge during the transients as well)
- Robustness of PCCI combustion (hardware variability effects?)
- Significant timing change (torque blips?)
- Open loop control of PCCI combustion

2009 Combustion Mode Transition-Deliverables

Summary

- Performance HCCI/PCCI (low temperature combustion) potentially offers increased thermal efficiency with reduced requirements for DPF regeneration. Demonstrated 4% BSFC improvement below 750 kPa BMEP. Low load fuel economy benefit will be application dependent
- Control Inability to adequately control combustion phasing and liquid fuel impingement limits the load range and thermal efficiency benefit of diesel HCCI/PCCI
- Fuel Chemistry Fuel blending (gasoline & diesel) is one method to increase load
- Combustion Lifted flame combustion is a potential low-soot diffusion combustion technology that is compatible with HCCI/PCCI. Demonstrated order of magnitude soot reduction. Plume-to-Plume interaction is a challenge

