Development of Chemical Kinetics Models for Lean NOx Traps

Richard S. Larson Sandia National Laboratories Livermore, CA 94551-0969

DOE Vehicle Technologies Program Annual Merit Review Washington, DC June 10, 2010

ACE035

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- Project involves ongoing fundamental research that supports DOE/industry development efforts for advanced leanburn engine aftertreatment systems.
- Project directions and continuation are evaluated annually.

Budget

 Project funded by DOE Vehicle Technologies Program:

FY09 - \$265K

FY10 - \$300K

Barriers

- Relevant barriers from 2006 ACEC Technical Roadmap:
 - Detailed understanding of catalyst fundamentals is lacking.
 - NOx adsorbers have a strong sensitivity to sulfur in the fuel.
 - NOx adsorbers are effective only within a relatively narrow temperature window.

Partners

 Principal collaborators: Oak Ridge National Laboratory (V. K. Chakravarthy, J. A. Pihl, C. S. Daw, and J.-S. Choi)

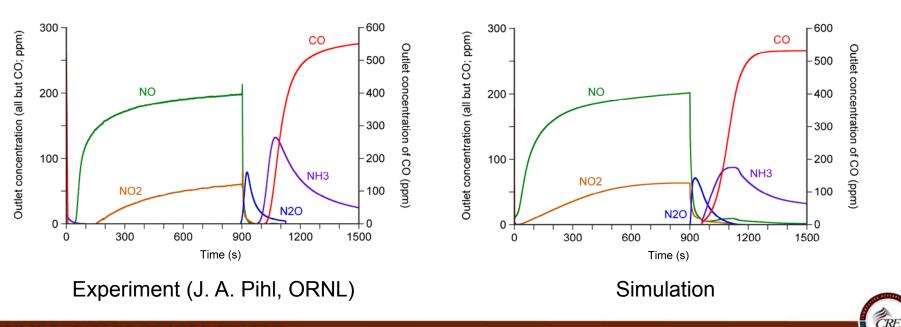
- Overall project goal: Obtain the fundamental surface chemistry knowledge needed for the design and optimal utilization of NOx trap catalysts, thereby helping to speed the widespread adoption of this technology.
- Relevance to VT Program goals: Effective, durable advanced aftertreatment systems for lean-burn engines must be available if the fuel economy advantages of these engines are to be realized.
- Specific current year objective: Identify and correct any deficiencies in the previously developed reaction mechanism describing normal storage/regeneration cycles, and complete development of a supplementary mechanism accounting for the effects of sulfation.

ħ

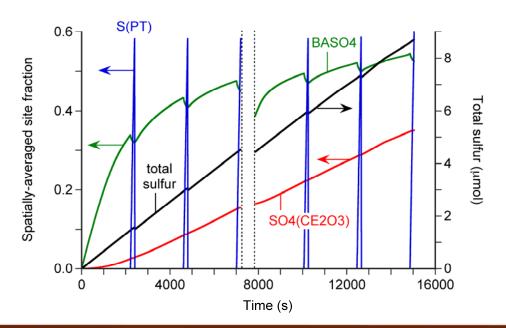
	FY07	FY08	FY09	FY10	FY11
Develop NOx reduction chemistry					
Develop NOx storage and release chemistry					
Develop sulfation and desulfation chemistry					
Develop chemistry for alternate reductants					
Compute enthalpies and simulate exotherms					

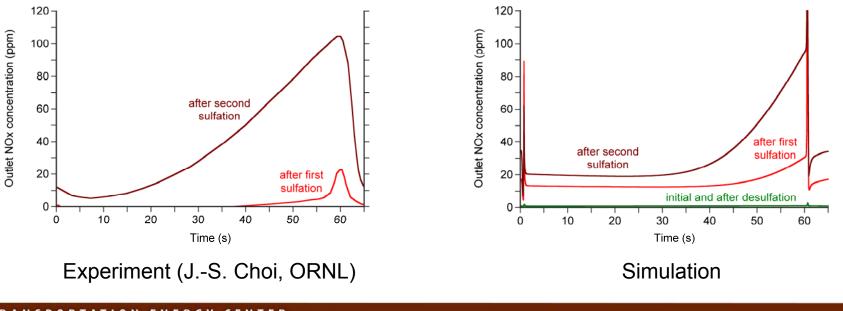
Overall Approach

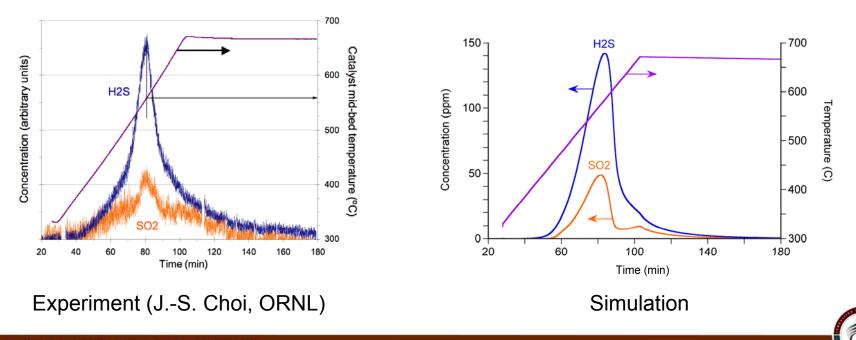
- Assemble tentative reaction sets for precious metal (catalytic), barium oxide (NOx storage), and cerium oxide (oxygen storage) sites.
- Infer kinetic parameters for three submechanisms in sequence by matching product distributions from experiments done at Oak Ridge National Laboratory (ORNL):
 - Precious metal chemistry (tentative) from steady flow experiments with storage minimized
 - NOx and oxygen storage/release chemistry from long cycle experiments
 - Sulfation/desulfation chemistry (all sites) from short cycle experiments using SO₂
- Use Chemkin-based plug flow codes to simulate flow of reactant mixture through a catalyst monolith channel.
- Use Sandia APPSPACK code to optimize fits to experimental data by adjusting kinetic parameters.
- Apply thermodynamic constraints during each fitting procedure in order to ensure complete consistency (often overlooked).

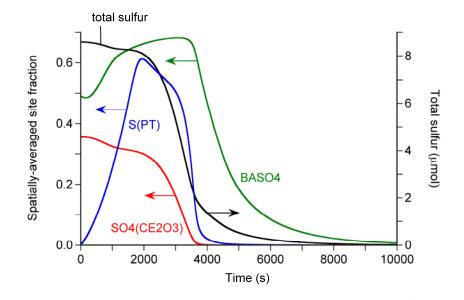


Technical Accomplishments (overview)


- Kinetic parameters for reactions on precious metal sites have been reevaluated *simultaneously* with those on storage sites.
 - Storage effects were found not to be negligible in steady flow experiments after all.
 - Steady flow and long cycle experiments have now both been simulated with a transient code to extract all kinetic parameters involved in NOx storage and reduction at once.
- The NOx storage/release mechanism has been upgraded with new species and reactions, while mass-transfer resistances have been discarded.
 - NOx can now be stored as $Ba(NO_2)_2$ and $BANO_2NO_3$ (in addition to others).
 - New reactions involving spillover of N(Pt) account for N_2O formation at 200°C.
 - Direction reduction of stored NOx by gas-phase H₂ and CO allows for successful simulation of short storage/regeneration cycles.
- The capabilities of our sulfation/desulfation mechanism have been greatly expanded, while the size has been reduced.
 - A modified CLEERS protocol involving sulfation, subsequent performance evaluation, and desulfation by temperature-programmed reduction is now simulated.
 - The principal experimental observations (completeness of SO₂ trapping, degradation of NOx storage capability, composition of desulfation product gas, completeness of desulfation) are reproduced at least semi-quantitatively.


- Simulation of NOx storage, release, and reduction at 200°C is now more successful than before.
 - Feed gas contains NO and excess O₂ during storage phase (0–900 s), reductants CO and H₂ during regeneration phase (900–1500 s).
 - Artificially long cycle time is used to allow resolution of transients.
 - The mechanism now accounts well for N₂O production, although NH₃ is somewhat underpredicted.


- Simulation of a modified CLEERS sulfation protocol (20 ppm SO₂ in feed) predicts changes in the surface composition.
 - Sulfation occurs during two sets of three long isothermal lean/rich cycles, separated by ten ordinary short cycles (not shown) for performance evaluation.
 - Sulfur is trapped more readily on barium than on cerium, but saturation occurs.
 - During rich phases, sulfur is trapped reversibly on Pt and some sulfate is lost from barium sites, but there is little if any loss of total sulfur.


- The effect of sulfation on NOx trapping efficiency during normal cycling (60 s lean/5 s rich) is simulated reasonably well, although improvement is needed.
 - For an unsulfated catalyst, NOx slip is negligible (experimentally).
 - Simulation shows unwanted NOx spikes at feed transition points and excessive NOx slip early in lean phase.
 - Discrepancies may be due (at least partially) to neglect of exotherms.

- Simulation of desulfation by temperature-programmed reduction is in excellent semi-quantitative agreement with experiment.
 - Temperature ramped at about 5°C/min with a feed containing 0.1% H₂.
 - Experimental concentrations are not quantitative (thus units are arbitrary).
 - For purposes of comparison, experimental and simulated concentrations are scaled by H₂S value at 80 min (near peak).

- The surface composition is predicted to change in a complex manner during desulfation.
 - As sulfate is released and reduced, Pt sites become covered largely with sulfur.
 - Sulfate released from cerium sites is initially redeposited on barium, although total trapped sulfur decreases monotonically (as it must).
 - As observed experimentally, removal of sulfur from barium requires higher temperatures than does removal from cerium.

Collaborations

- Our principal collaboration is with the Fuels, Engines and Emissions Research Center at Oak Ridge National Laboratory.
 - V. K. Chakravarthy (mechanism development)
 - J. A. Pihl (experimental data NOx storage and reduction)
 - J.-S. Choi (experimental data sulfation/desulfation)
 - C. S. Daw (mechanism development, CLEERS program direction)
- We also have a loose collaboration with the CLEERS consortium.
 - Tri-monthly technical teleconferences
 - Annual workshop

- Modify kinetic parameters and/or reaction set for sulfation/ desulfation to account better for products observed during ordinary lean/rich cycling (FY10).
 - Try to match production rates of N_2O and NH_3 as well as NO/NO_2 ratio, although time resolution of experimental data may be problematic.
- Augment mechanism with reactions accounting for reductants other than CO and H2 (FY10+).
 - Unburned and/or partially burned hydrocarbons may play a role.
 - Deferred from last year due to need to address newly discovered issues.
- Develop computational tools and data needed to simulate fully nonisothermal cycles (FY11).
 - Implement general energy balance in Chemkin-based transient plug flow code.
 - Use previously inferred equilibrium constants to extract thermodynamic properties of surface species.

- A fundamental understanding of LNT chemistry is needed to realize the full potential of this aftertreatment technology, which could lead to greater use of fuel-efficient lean-burn engines.
- We have used a multi-tiered approach to developing an elementary chemical mechanism benchmarked against experimental data.
 - Simulate a set of steady flow experiments, with storage effects minimized, to infer a tentative mechanism for chemistry on precious metal sites (completed).
 - Simulate a set of long cycle experiments to infer a mechanism for NOx and oxygen storage sites while simultaneously finalizing precious metal chemistry (completed).
 - Simulate a simplified sulfation/desulfation protocol to obtain a supplementary set of reactions involving sulfur on all three kinds of sites (nearly completed).
 - Investigate the potential role of reductants other than CO and H₂.
- While simulation of isothermal experiments is the preferred way to extract kinetic parameters, simulation of realistic storage/regeneration cycles requires that exotherms be considered.
- Our ultimate goal is to facilitate improved designs for LNT-based aftertreatment systems and to assist in the development of improved catalysts.

