

SuperTruck

Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle

Vehicle Systems

DOE Contract: DE-EE0004232

P.I.: Pascal Amar, Volvo Technology of America

2012 Annual Merit Review

Washington, DC

May 16, 2013

Project ID: VSS081

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

Timeline Start: June 2011 End: June 2016 <i>37% complete</i>	 Barriers Cost effective & timely evaluation of advanced components and configurations Availability of high resolution computational models & simulation methods 	
Budget Total Cost: \$37.99M	Team Lead: Volvo Technology of America	
Cost share: \$19.07M FY12 funding: \$4.40M FY13 funding: \$3.78M	Partners: VOLVO Grote PENNSTATE	

Relevance

In support of DOE's mission

"[...] more energy efficient and environmentally friendly highway transportation [...]"

Project Objectives

Objective 1 50% more ton-miles per gallon than a 'best in class' 2009 truck

Objective 1a 50% Brake Thermal Efficiency

Objective 2 55% Brake Thermal Efficiency Concept

Reporting Period Objectives

- Validate and deploy analytical tools
- Implement new technologies on concept vehicle for evaluation
- Prepare for final technology selection (Phase I)

Approach - Concept selection

Approach - System Simulations

Complete Vehicle Simulation Platform

- Predict the effect of component improvements on the energy efficiency of the complete vehicle
- Complete Vehicle Aerodynamics
 - Optimize complete vehicle geometry
 - Balance powertrain & aero requirements

"Optimizing the parts will not optimize the whole."

Systems Engineering Fundamentals Ford Motor Company

- Quantify powertrain performance requirements
- Predict fuel impact of new technologies
- Evaluate concepts under real-world conditions

Accomplishments - System Simulations

Approach - Engine "right-sizing"

Engine Speed \rightarrow

Approach - Powertrain Improvements

BTE Improvement Process

- Evaluate technologies that enable 50% engine thermal efficiency
- Select powertrain system concept for optimal efficiency
- Integrate powertrain system in concept vehicle and evaluate performance on customer duty cycle

Accomplishments - Engine Efficiency

Approach - Aero Improvements

Accomplishments - Trailer Optimization

- Optimized key parameters of tail and skirts through CFD simulations
- Produced devices for optimum geometry and installed on test trailer
- Validation road test scheduled for next quarter

Accomplishments - Aero Improvements

Approach - Weight Reduction

- Aluminum/Steel cab concept
 - Minimize impact on assembly methods
 - Maintain structural strength & mechanical properties
- New roof concept
 - Reduce weight & parts though structural simplification
 - Incorporate new materials & bonding methods
- Coming up... new frame concept
 - Evaluating several design paths for lightweight frame, goal > 600lb lighter

Accomplishments - Weight Reduction

Approach - Reduced Parasitic Losses

•

Implement intelligent controls • Maximize benefit of new technologies • through complete vehicle integration Enabler for idle-free hotel mode **Reduced Duty Cycle** Improved Components Integrated Energy Mgt Predictive Controls

Vehicle Efficiency Increase

15

Improve component efficiency

Accomplishments - Electrical Loads

Lamp Function	Baseline (Incadescent) Current [A]	Baseline (Incadescent) Wattage at 12.8V	SuperTruck LED System Current [A]	SuperTruck Wattage at 12.8V	Power Saved per Function [W]
Marker	3.2	41.3	0.46	5.8	35.5
Tail, License	4.8	61.9	0.28	3.5	58.4
Stop	4.3	54.6	0.93	11.9	42.6
Right Turn	4.3	54.5	0.52	6.7	47.8
Left Turn	4.2	54.1	0.52	6.7	47.4
Totals	21	266	3	35	232

Lamp Function	Baseline (Incadescent) Current [A]	Baseline (Incadescent) Wattage at 12.8V	SuperTruck LED System Current [A]	SuperTruck Wattage at 12.8V	Power Saved per Function [W]
High Beam	11	140.8	4	51.2	89.6
Low Beam	9	115.2	3	38.4	76.8
Front Turn	4.2	53.8	1	12.8	41.0
Front Park	0.54	6.9	0.2	2.6	4.4
Driving	7.4	94.7	2.8	35.8	58.9
Fog	6	76.8	2	25.6	51.2
Totals	38	488	13	166	322

- Verified power savings of high-efficiency lighting systems w/ LED lights & LightForm
- Estimated fuel savings > 100Gal/year/truck
- * SAE Paper 2013-01-0753

Future Work (next reporting period)

- Complete retrofit and commissioning of concept vehicle next quarter
- Perform dyno and on-road tests during summer to verify freight efficiency improvements
- Launch field test of trailer aerodynamic devices
- \rightarrow Freeze concept selection and ramp up development of final demonstrator
 - Next generation components
 - Full vehicle integration incl. Hotel Mode
 - Advanced energy management concepts

Summary

• Milestones & Technical Accomplishments

- Successfully deployed analytical tools developed previously
- Validated initial trailer aero improvements on-road (11% FE impact)
- Completed trailer optimization in CFD (target 14-16% total FE impact)
- Demonstrated 48% brake thermal efficiency engine test cell
- Started installing concept powertrain into concept vehicle on-going
- Next Step
 - Validate complete vehicle performance

Collaborations & key Suppliers

Organization	Key Contribution
Volvo Technology of America	Project lead & concept simulations
Volvo Group Truck Technology	Complete vehicle integration & vehicle testing
Volvo Group Powertrain Engineering	Efficient complete powertrain solutions
Freight Wing	Optimized aerodynamic geometries & devices for trailer
Grote	Advanced lighting systems
Penn State University	Advanced combustion modeling, simulation & experiments
Hendrickson	Lightweight trailer axle & suspension components
ExxonMobil	Advanced fuels & lubricants
Alcoa Wheels	Lightweight wheels
Michelin	Advanced low-friction tires
Meritor	High-efficiency tractor axles

Relevant Research

This material is based upon work supported by

- DOE & NETL under Award Number DE-EE0004232
- DOE & NETL under Award Number DE-FC26-07NT43222
- DOE Project ID VSS006, Reduce Truck Aerodynamic Drag w/ LLNL
- DOE Project ID VSS022, CoolCab Reduce Thermal Load w/ NREL

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

