

... for a brighter future

A U.S. Department of Energy laboratory managed by The University of Chicago

Developing a new high capacity anode with long life

D. Dambournet, I. Belharouak, and K. Amine Argonne National Laboratory May 19th, 2009

Project ID: esp_11_amine

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

Start - October 1st, 2008.
 Finish - September 30, 2009.
 40%

Budget

- Total project funding
 - DOE share: 200K

Barriers

- Barriers addressed
 - Overcome the inherent safety issue of graphite.
 - Extend the cycle life of the lithium-ion battery.
 - Extend the calendar life the lithium ion batteries

- Interactions/ collaborations:
 D. Dambournet, I. Belharouak
- Project lead: Khalil Amine

Objectives

- Develop new anode materials that provide very high gravimetric and volumetric energy density for PHEV applications.
- Explore ways for preparing nanosized TiO₂ having different structural arrangements.
- Understand the lithium insertion mechanism by which the TiO₂ phases can achieve high specific capacity.
- Demonstrate the applicability of TiO₂ in full lithium ion cells.

Milestones

Month/Year	Milestone or Go/No-Go Decision
May-09	 Develope a new synthetic method to prepare nanosized TiO² materials. Understande how to isolate different TiO² polymorphs (anatase, rutile, brookite) by tuning the synthesis conditions. Conduct structural and electrochemical characterizations.
Sept-09	 Investigate alternative routes to prepare specifically the TiO² beta form. Evaluate the electrochemical performance of the TiO²(B). Investigate cells based TiO² and high capacity cathode materials.
Sept-2010	 Develop a suitable morphology with micron size secondary particles and dense nano-sized primary particles to obtain full capacity of TiO₂ and good rate capability. Explore further ways to improve the rate capability by means of carbon coating and/or high energy ball milling.

Approach

- Develop a simple synthesis route to prepare nano-sized TiO₂ materials using low cost salts.
- Explore coating TiO₂ with nano-sized conductive carbon layers to improve conductivity and increase active particle utilization to achieve high energy.
- Develop a suitable morphology with micron size secondary particles and dense nanosized primary particles to obtain full capacity of TiO₂ and good rate capability.

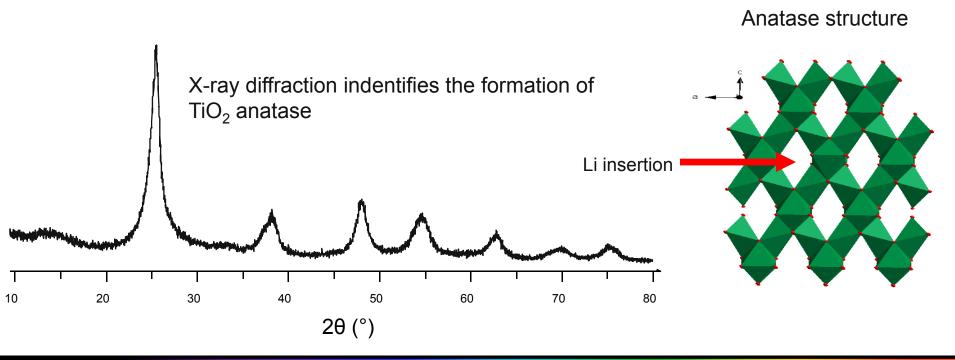
Advantages of TiO₂ as anode for lithium batteries

 $-TiO_2$ has a potential vs. Li^o (~1.5 V) prevents the plating of metallic lithium at the negative electrode, thus enhancing the safety of the cell.

 $-TiO_2$ remains stable after lithium insertion and doesn't require SEI layer, thus extending the life of the cell

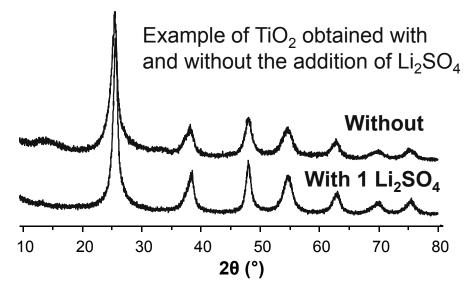
 $-TiO_2$ exhibits relatively high practical capacity (~240 mAh/g), smaller than graphite, but greater than $Li_4Ti_5O_{12}$.

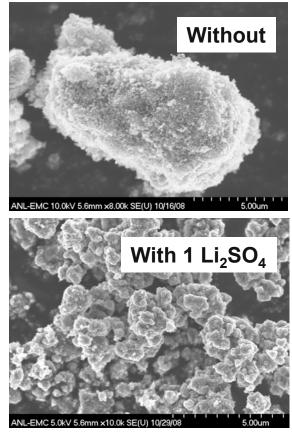
 $-TiO_2$ is non toxic, abundant, and inexpensive.


-TiO₂ has different structural arrangements that act as Li-host and display different voltage profiles.

Preparation of TiO₂ Anatase by Thermolysis Reaction

Synthesis:


- Thermolysis of TiOSO₄ oxysulfate in an aqueous medium (T=90°C t=4h).
 - TiOSO₄ is a Low cost salt,
 - Contains sulfuric acid which stabilizes the formation of nanoparticles,
 - favorizes the formation of the Anatase type structure.

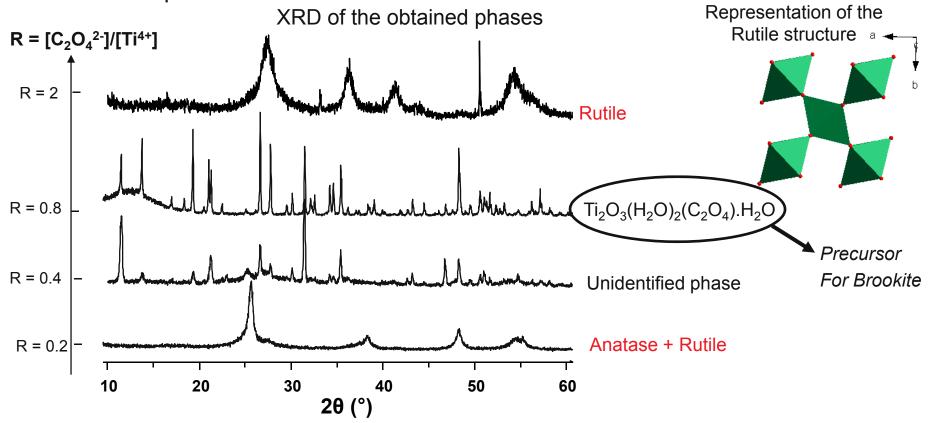

Effect of Additives on the Preparation of TiO₂ Anatase

- Additives such as inorganic salts can act as capping agents, structure and morphology directing agents.

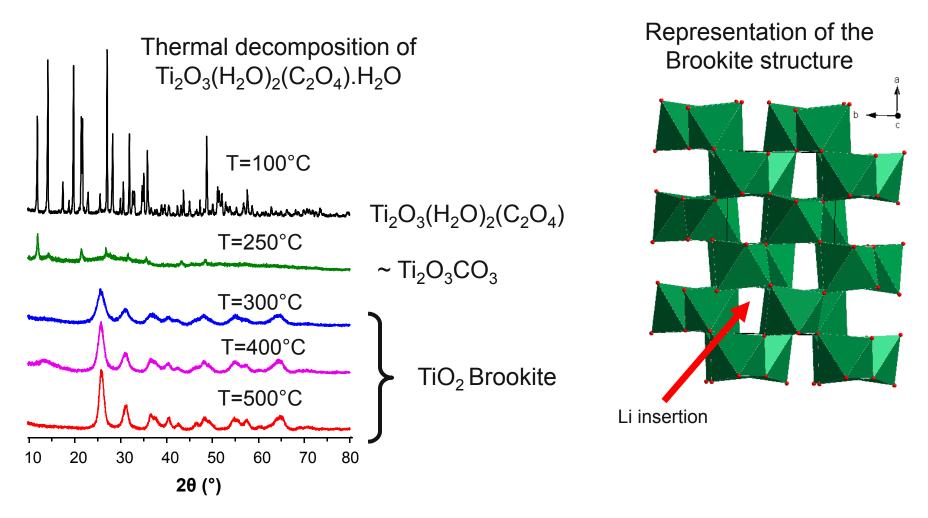
Addition of Lithium sulfate prevents the formation of large agglomerate.


Addition of lithium nitrate or chloride decreases the crystallinity (not shown here).

Scanning electron microscopy images


Example of SEM Image of TiO₂ Anatase

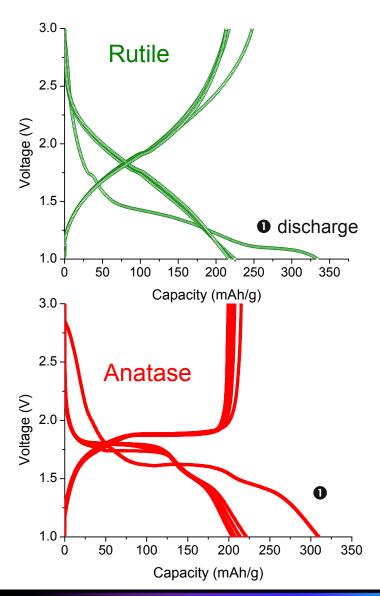
Effect of Oxalate Group on the Preparation of TiO₂

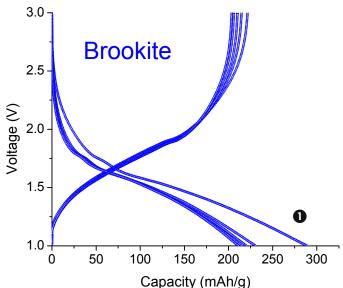

The addition of $Li_2C_2O_4$ has been proved to be relevant on the preparation of TiO_2 . The molar ratio R = $[C_2O_4^{2-}]/[Ti^{4+}]$ has a strong influence on the final stabilized phase.

 Oxalate species act as a strong complexing agent and depending of the concentration can stabilized several phases

Preparation of TiO₂ Brookite

TiO₂ Brookite, usually very difficult to prepare, was obtained by a simple preparation route, and has an open structure suitable for lithium insertion


Electrochemical Properties


Lithium insertion and deinsertion occurs typically at 1.4-1.7 V versus Li⁺/Li as follows: $xLi^+ + TiO_2 + xe^- \leftrightarrow Li_xTiO_2$ Theoretical capacity value is 335 mAh/g for 1 inserted Lithium per TiO₂ 3.5 -3.0 First discharge profile Cell configuration: (80% TiO₂, 10% Super-P, 10% PVdF) 2.5 Anatase Li metal anode Rate: C/30 from 1 to 3V Voltage (V) Brookite Electrolyte 1.2M LiPF₆ in (3EC:7EMC) 2.0 Rutile 1.5 1.0 Insertion of 1 Li⁺ per TiO₂ 0.5 100 200 250 50 150 300 350 0 Capacity (mAh/g)

TiO₂ forms have different voltage profiles and provide specific capacities close to the theoretical ones at low rate

Electrochemical Properties (Continued)

All TiO₂ forms showed similar capacities, with brookite having the lowest irreversible capacity

Summary

Developed a new synthetic method to prepare nanosized TiO_2 materials.

Soluted different TiO_2 polymorphs (anatase, rutile, brookite) by tuning the synthesis conditions. The case of the Brookite being relevant with the achievement of a very simple way to prepare this metastable phase.

Structural and electrochemical characterizations have been performed on the materials obtained showing some promising features.

Future works

Complete the characterization of the prepared TiO₂ materials: TEM and further electrochemical characterizations.

Explore new synthesis route using a CSTR tank reactor that can provide suitable morphology (nano-structured materials with high packing density).

Explore ways to limit the irreversible capacity loss due to the poor electronic conductivity through the integration of conductive phases

- Carbon coating and/or
- high energy ball milling
- Nano-primary particle inbanded in micron size secondary particles

investigate optimum TiO₂ with high voltage and capacity cathode materials such as $Li_{1.2}Ni_{0.2}Mn_{0.6}O_2$.

