

Developing High Capacity, Long Life anodes

K. Amine (P.I)

A. Abouimrane, D. Dambournet, and I. Belharouak,

Argonne National Laboratory

DOE merit review

May 09, 2011

Project ID # ES020

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- Start October 1st, 2009.
- Finish September 2014
- 50% complete

Barriers

- Safety of the battery.
- Power density of the battery.
- Cycle & calendar life span of the battery.

Budget

- Total project funding: 900K
 - FY11: 300K
 - FY10: 300K
 - FY09: 300K

Partners

- P. Chupas, K. Chapman, Y. Ren Advanced Photon Source, (APS/ANL).
- Z. Fang (University of Utah).
- FMC, Northwestern University,

Objectives

Develop new advanced high energy anode materials with long life and improved Safety for PHEV and EV applications.

Develop a low cost synthesis methods to prepare high energy anodes

□ Full structural and electrochemical characterizations of the prepared anode materials.

Demonstrate the applicability of these anodes in half and full cells systems.

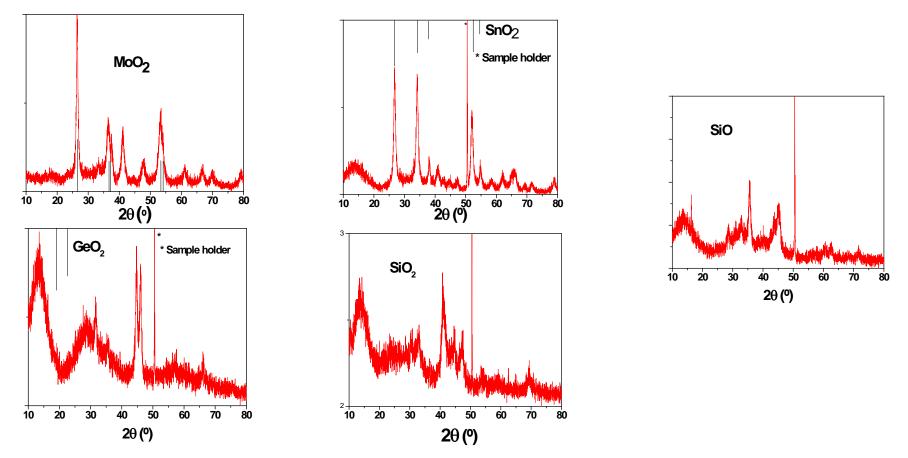
Approaches

- MO-Sn_xCo_yC_z (MO=SiO, SiO₂, SnO₂, MoO₂, GeO₂) anode materials were selected for investigation as high energy anode based on the following criteria:
 - Sn_xCo_yC_z alloys are known to provide a capacity of 400-500mAh/g for hundreds of cycles.
 - MO anodes are known to provide more than 1000 mAh/g with poor cyleability.
 - The formation of $Sn_xCo_yC_z$ and MO composite could lead to the increase in the capacity, reduce the amount of cobalt in the material and improve the cyleablity as $Sn_xCo_yC_z$ play the role of buffers against the volume expansion of MO.
 - This anode system is more safer than the graphite and possess low potentials in the range of 0.3-0.75V (expect high voltage cells when combined with high cathodes)
 - This anode system could offer higher practical capacity and higher 1st cycle charge discharge efficiency
 - This anode system offers high packing density (up to 3 g/cc), much higher than graphite (1.1g/cc) (except higher volumetric density)

Milestones FY 10 : High capacity and Long Life Anodes

□ Some of the composite anode were prepared by mechanically alloying using metal (Co, Sn) carbon and oxides (MO). (*Completed*)

□ Comparative studies between $MO-Sn_xCo_yC_z$ (MO=SiO, SiO_2 , SnO_2 , MoO_2 , GeO_2) based on their electrochemical properties and their cost. (*Completed*)


□ Investigation of their structural rearrangement during the intercalation or de-intercalation of lithium. (On going)

□ Selection of a candidate for further electrochemical characterization: full cells study and HPPC tests. (*On going*)

□ Improvement of the 1st cycle charge discharge efficiency. (On going)

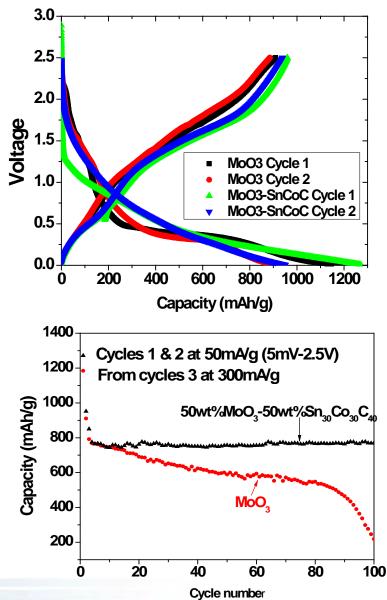
Preparation of 50 wt% MO – 50 wt% $Sn_{30}Co_{30}C_{40}$ (MO= MoO₃, SnO₂, GeO₂, SiO₂, SiO) materials

□ All materialswere prepared using a high energy ball milling.

 XRD shows that the SnO₂ structure was conserved, MoO₃ was reduced to MoO₂ and no trace of GeO₂ is present confirming the composite structure.

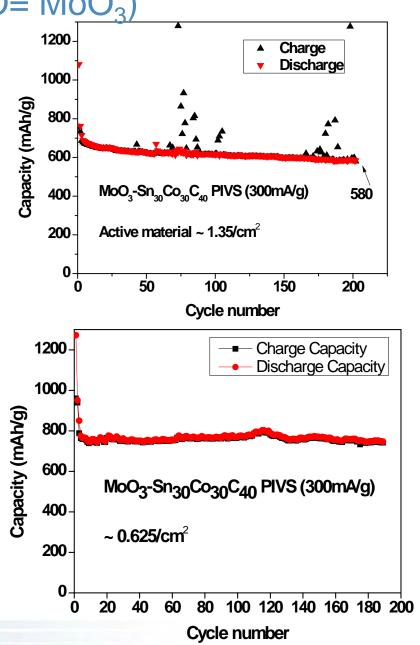
Densities of 50 wt% MO – 50 wt% $Sn_{30}Co_{30}C_{40}$ (MO= MoO₃, SnO₂, GeO₂, SiO₂, SiO)

Material	Tap density	True density
50 wt% MO – 50 wt%	g/cc	g/cc
Sn ₃₀ Co ₃₀ C ₄₀		
$MO = MoO_3$	2.74	6.05
$MO = SnO_2$	3.02	7.13
$MO = GeO_2$	2.62	5.06
$MO = SiO_2$	1.43	3.58
MO = SiO	1.89	3.78

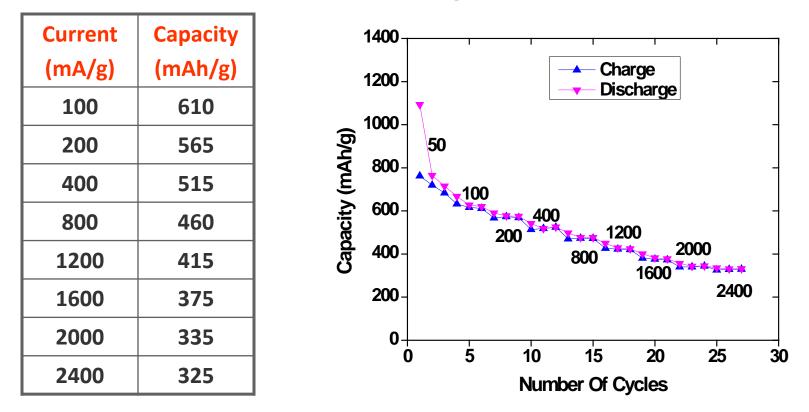

 Materials based on tin, molybdenum and germanium have the highest tap density.

Materials based silicon and tin are the cheapest.

Voltage profile and cycleability 50 wt% MO – 50 wt% $Sn_{30}Co_{30}C_{40}$ (MO= MoO₃)


- The laminate is prepared by using 80% active material 10% Acetylene black and 10% Polyimide binder.
- Battery are cycled between 5mV and 2.5V.
- A Voltage ~ 0.6V higher than the graphite was observed. High Voltage means less Li- plating and better safety.

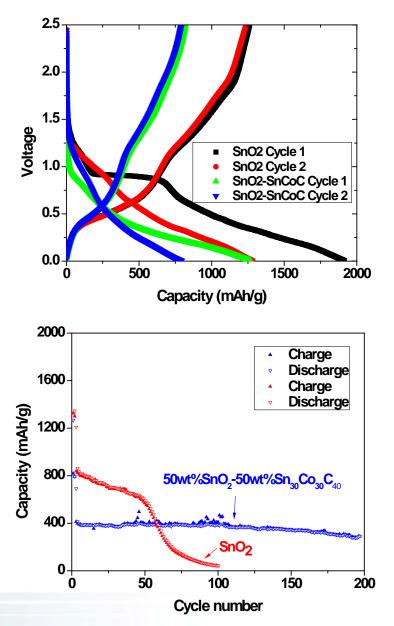
The composite material cycles far much better than the MoO₃ oxide alone.



Cycleability and effect of loading on 50 wt% MO – 50 wt% $Sn_{30}Co_{30}C_{40}$ (MO= MoO₃)

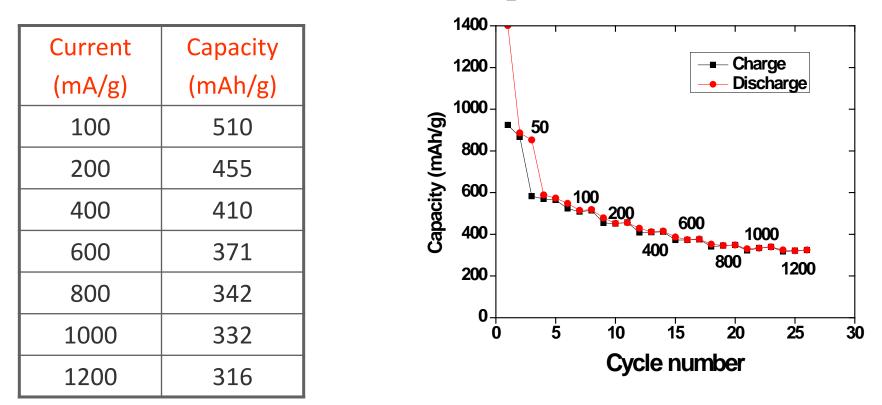
- A capacity near 580 mAh/g is delivered after 200 cycles under 300 mA/g current rate (over C/2 rate).
- 1st cycle effeciecy~70%.
- The capacity changes with the active material loading.
- With low active loading, a capacity of 800 mAh/g can be reached.

Rate capability of 50 wt% MO – 50 wt% $Sn_{30}Co_{30}C_{40}$ (MO= MoO₃)



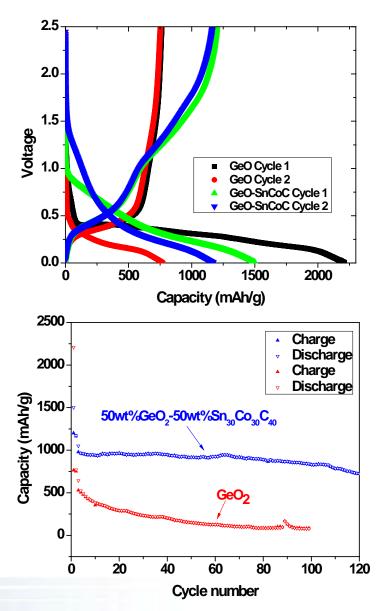
Good cycling with high coulombic efficiency after the first cycle.

50 wt% MoO₃ – 50 wt% Sn₃₀Co₃₀C₄₀ anode showed superior rate capability, i.e. 325 mAh/g capacity under a 7~8C rate.


Voltage profile and cycleability of 50 wt% MO – 50 wt% $Sn_{30}Co_{30}C_{40}$ (MO= SnO_2)

- A Voltage ~ 0.75V, higher than the graphite that provide better safety and no lithium plating
- The composite shows a capacity of 400 mAh/g for more than 150 cycles with moderate capacity fade under 300mA/g current rate.
- 1st cycle effeciecy~65%.
- The composite material cycles better than the SnO₂ oxide alone.

Rate capability of 50 wt% MO – 50 wt% $Sn_{30}Co_{30}C_{40}$ (MO= SnO_2)

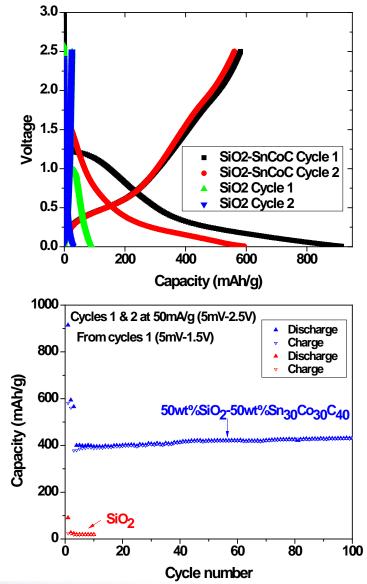

 Good cycling with high coulombic efficiency (1st cycle irreversibility is about 65% due to the formation of Li₂O which is not active in the case of SnO₂-Sn₃₀Co₃₀C₄₀ composite).

50 wt% SnO₂ – 50 wt% Sn₃₀Co₃₀C₄₀ anode showed superior rate capability, i.e. 316 mAh/g capacity under a 4C rate.

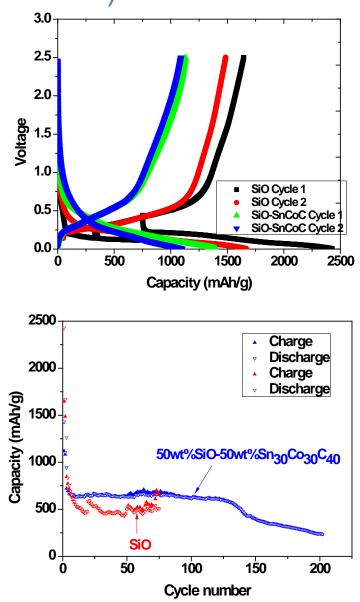
Voltage profile and cycleability of 50 wt% MO – 50 wt% $Sn_{30}Co_{30}C_{40}$ (MO= GeO₂)

- A Voltage ~ 0.5V higher than the graphite was observed
- The composite shows a capacity of 800-1000 mAh/g for 100 cycles with moderate capacity fade under 300 mA/g current rate.
- 1st cycle charge discharge effeciecy~80%.

The composite material cycles better than the GeO₂ oxide alone with much higher 1st cycle charge-discharge efficiency.



Voltage profile and cycleability of 50 wt% MO – 50 wt% $Sn_{30}Co_{30}C_{40}$ (MO= SiO₂)


- A Voltage ~ 0.5V higher than the graphite with MO=SiO₂
- SiO₂ alone is not electrochemically active.
- The composite shows a capacity of 432 mAh/g for 100 cycles with outstanding charge discharge efficiency when it cycled between 5mV and 1.5V under 100 mA/g current using only a PVDF binder.

1st cycle effeciency~64%.

Voltage profile and cycleability of 50 wt% MO – 50 wt% $Sn_{30}Co_{30}C_{40}$ (MO= SiO)

- A voltage ~0.5V higher than that of graphite.
- A capacity near 580 mAh/g is delivered after 130 cycles under 300 mA/g current rate between 5mv and 1.5V
- 1st cycle charge-discharge effeciecy~79% is better than SiO alone (only 67%).

Summary

□ MO-Sn_xCo_yC_z (MO = SiO, SiO₂, SnO₂, MoO₂, GeO₂) system was prepared by mechanically alloying using a high energy ball milling.

□ MO-Sn_xCo_yC_z system where (MO = SiO, SiO₂, SnO₂) are the most competitive system in term of cost.

□ 50wt% SnO₂ - 50wt% Sn₃₀Co₃₀C₄₀ system provides the higher tap density but suffers from the first cycle irreversibility (near 65%).

□ 50wt% SiO - 50wt% $Sn_{30}Co_{30}C_{40}$ system shows promising properties in terms of cost, tap density, capacity, cycleability and 1st cycle charge discharge efficiency.

Future Works

 \Rightarrow Investigate of MO-Sn_xCo_yC_z (MO = SiO, SiO₂, SnO₂, MoO₂, GeO₂) system in full cell configuration.

 \Rightarrow In-situ structural characterizations of MO-Sn_xCo_yC_z (MO = SiO, SiO₂, SnO₂, MoO₂, GeO₂) system with APS (Dr. Ren).

 \Rightarrow Ex-situ PDF characterizations with APS (Dr. Chupas).

⇒ Surface characterization of lithiated anode materials by XPS with Utah University (Dr. Fang).

⇒ Investigate the pulse-discharge and charge performance of designed cell based on MO-Sn_xCo_yC_z (MO = SiO, SiO₂, SnO₂, MoO₂, GeO₂) system anode through hybrid pulse power characterization (HPPC test).

⇒ Understand the causes of the first cycle charge discharge irreversibility and try to reduce it.

Collaborations

- A. Tressaud & A. Demourgues (ICMCB, Bordeaux, France)
- FMC corporation
- PJ. Chupas, and Y. Ren Advanced Photon Sources, Argonne
- Z. Fang University of Utah.

Patents

Provisional application

- New Silicon-based anode material, A. Abouimrane, K. Amine, (IN-10-013).