

Develop Thermoelectric Technology for Automotive Waste Heat Recovery

Gregory P. Meisner General Motors Research & Development June 11, 2010

Project ID # ACE050

This presentation does not contain any proprietary, confidential, or otherwise restricted information

<u>GM</u>

Overview

Timeline

- Start date May 2005
- End date October 31, 2010
- Percent complete 80%

Budget

- Total funding: \$12,779,610
 - DOE share: \$7,026,329
 - Contractor share: \$5,753,281
- Funding received in
 - FY09: \$920,987
 - FY10: \$356,666 (10/09-2/10)

Barriers

- Barriers addressed
 - Integrating new advanced TE materials into operational devices & systems
 - Integrating/Load Matching advanced TE systems with vehicle electrical networks
 - Verifying device & system performance under operating conditions

Partners

- Interactions/collaborations
 - ORNL High temperature transport and mechanical property measurements
 - UNLV Computational materials development
 - Marlow TE module development and fabrication
 - Faurecia Exhaust subsystem fabrication and integration
 - Project lead: GM R&D

Relevance – Objectives

Achieve 10 % improvement in fuel economy (FE) by 2015 without increasing emissions

- Demonstrate FE improvement for the Federal Test Procedure driving cycle (~3%)
- Demonstrate that actual FE improvement for real world driving conditions is closer to DOE goal

Demonstrate commercial viability

- Assemble, install, and test prototype TEG on a production vehicle
- Collect performance data, show viability
- Identify specific design, engineering, and manufacturability improvements for path to production

Current Specific Objectives:

- Complete initial TEG prototype construction
 - Translate conceptual design from GE into buildable unit
 - Fabricate subsystem parts and complete assembly

Complete test vehicle modification and integration

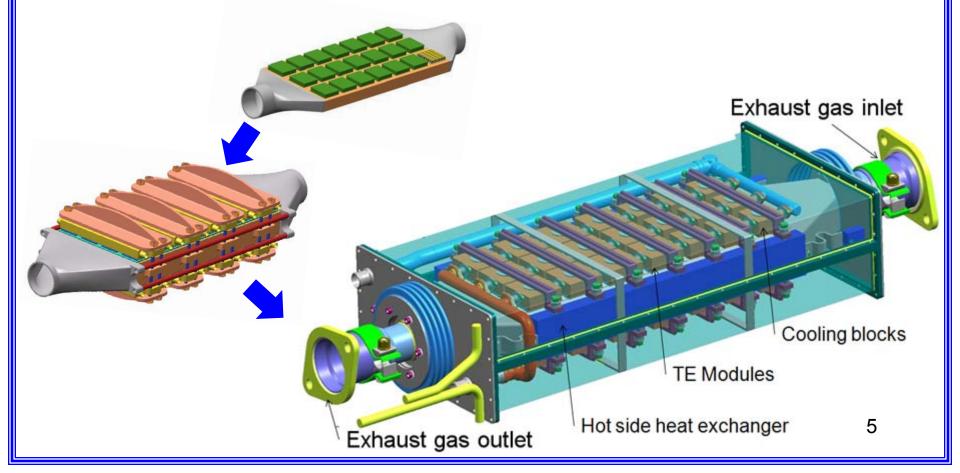
- Exhaust system modification and bypass control for thermal management
- Integration of electronic systems and controls for electrical power management
- Install TEG on vehicle

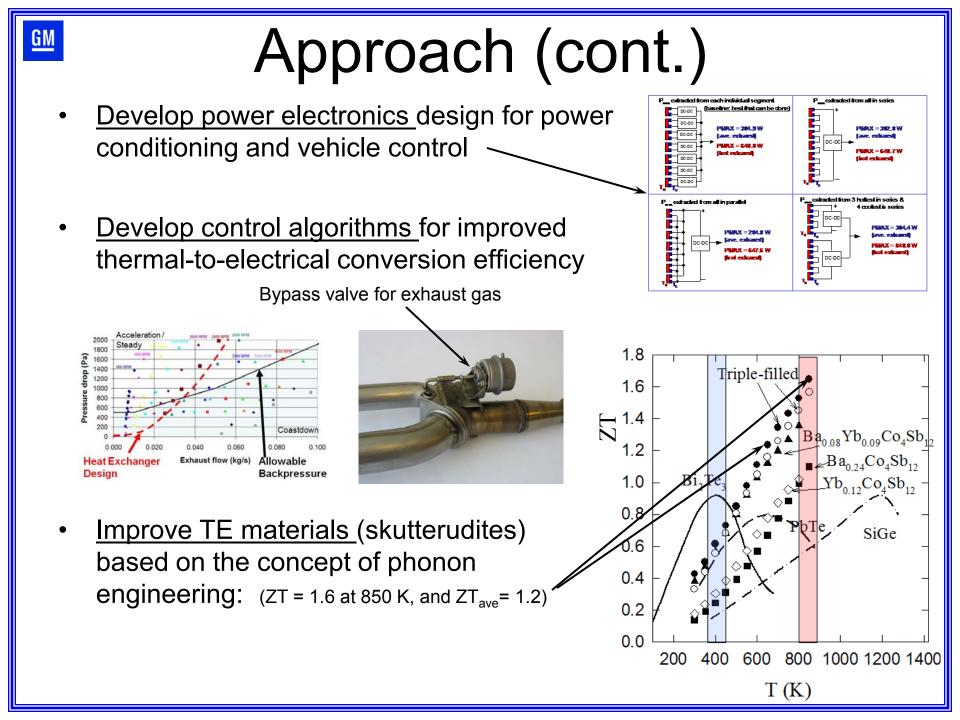
- Collect performance data
- Improve material ZT and thermo-mechanical properties
 - Adjust composition and processing for best results
 - Synthesize material batches for TE module production
- TE module production
 - Complete metallization studies and fabrication method study
 - Fabricate modules for TEG

Relevance – Milestones

Previous Year

GM


- Provide the initial TE waste heat recovery subsystem design
- Provide initial lab test data for TE modules
- Finalize TE waste heat recovery subsystem design


Current Year

- Provide initial production ready TE modules for application-based testing --Mar 31, 2009
- Complete prototype TE generator subsystem parts fabrication and assembly – Oct 31, 2009
- Complete vehicle modification and system integration of controls and electrical system of test vehicle for first TE generator unit Jan 2010
- Install first TE generator unit onto test vehicle Feb 2010

Approach

- <u>Develop models and computational tools</u> to design TE generators which include heat transfer physics at heat exchanger and interfaces; TE material properties; and mechanical reliability
- Finalize design, fabricate, and assemble prototype TE generator

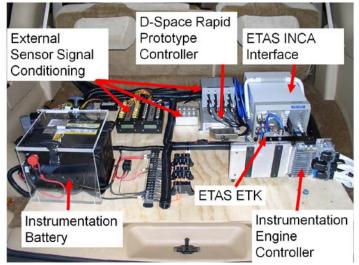
Approach (cont.)

- <u>Assess TEG Performance</u>
 - Start-Cart
 - First step in integration development
 - Provides a decoupled testing environment
 - Provides easy access for modification and debugging
 - Chassis-Rolls Dynamometer
 - Provide a realistic loading and repeatable environment, though not a realistic environment
 - Precise data collection
 - Standard test method for fuel economy and emissions measurements
 - Environmental Dynamometer
 - Chassis-rolls dynamometer which simulates grades, atmospheric environment

Real World Driving ~

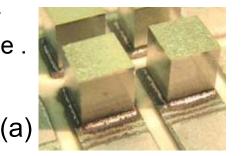
Technical Accomplishments and Progress

 Completed thermoelectric generator design and began fabrication of heat exchanger subassemblies.
First prototype completed, second one in progress.



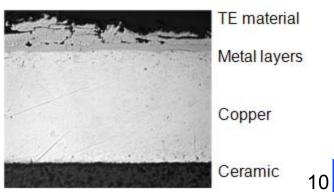
Technical Accomplishments and Progress (cont.)

• Completed detailed design and assembly of power electronics for vehicle integration, installation and vehicle modification.


 Completed exhaust system modification: parts fabricated and installed

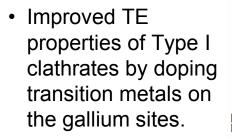
Technical Accomplishments and Progress (cont.)

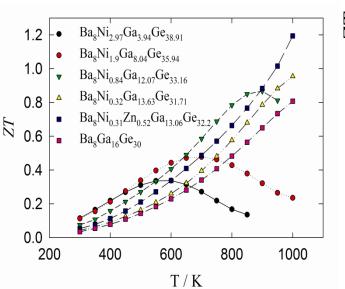
 Evaluated braze methods for electrical connections to PbTe.

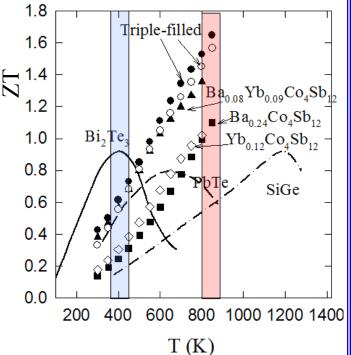

(a) PbTe elements with a thick nickel end cap brazed to the metallization layer, and (b) shear test results with adhesion promoting heat treatment (failure is in bulk material.)

(b

- Designed tooling for fabricating ceramic headers for TE modules.
- Synthesized several n-type PbTe ingots and explored processing variables to reduce cracking and fragility, and to improve adhesion of electrical and thermal contacts.

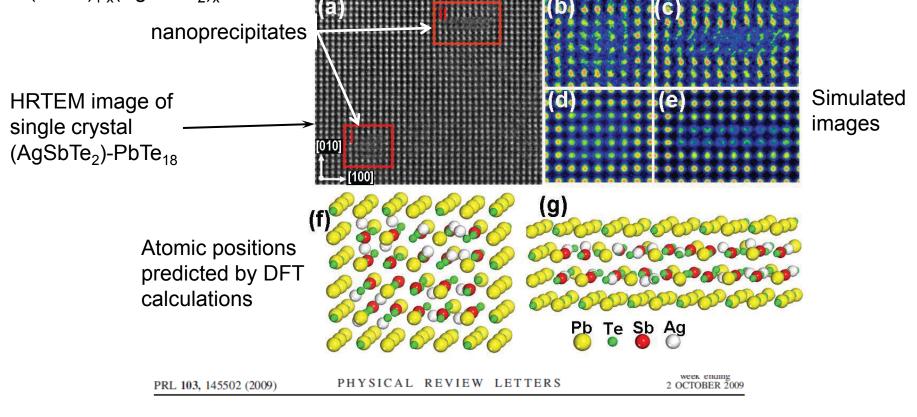

Prototype PbTe module


Technical Accomplishments and Progress (cont.)


- Validated measurements of transport and mechanical properties and performance at high temperature.
- Explored optimization of preferred materials for use in TE modules.
- Improvement in the synthesis, processing, and transport properties of Yb-filled skutterudites associated with specifically created nano-scale precipitates at grain boundaries and within grains.
- Achieved a figure of merit ZT = 1.6 for multiple filled skutterudites, highest value yet reached for any n-type filled skutterudite material.

<u>GM</u>

 Investigated new TE materials: In₄Se₃, In₄Te₃, Cu-Ge-Se.



Technical Accomplishments and Progress (cont.)

<u>GM</u>

 Conducted computational and experimental studies of the microstructure and nucleation mechanisms of nanoprecipitates that lead to the superior TE performance of (PbTe)_{1-x}(AgSbTe₂)_x.

Microstructure and a Nucleation Mechanism for Nanoprecipitates in PbTe-AgSbTe₂

Xuezhi Ke,^{1,2,*} Changfeng Chen,^{1,†} Jihui Yang,^{3,‡} Lijun Wu,⁴ Juan Zhou,⁴ Qiang Li,⁴ Yimei Zhu,^{4,§} and P.R. C. Kent⁵

Collaboration and Coordination with Other Institutions

Current Collaborators (subcontractors):

- ORNL High temperature transport and mechanical property measurements
- UNLV Computational materials development
- Marlow TE module development and fabrication
- Future Tech Consultant (Francis Stabler)

Suppliers:

<u>GM</u>

- Faurecia Exhaust subsystem fabrication and integration
- HTI Heat Exchangers

Previous Collaborators (subcontractors):

- General Electric subsystem modeling and design
- University of Michigan, Michigan State University, Brookhaven National Lab, University of South Florida, RTI – TE materials development

Proposed Future Work

(Activities for the remainder of this project, ending October 31, 2010)

• Provide test results for initial TE generator (1st unit)

- Complete assembly of 2nd TE generator unit with full electrical system components.
- Finalize and implement vehicle integration with TE waste heat recovery system and complete the necessary vehicle modifications.
- Develop TE modules for 3rd TE generator unit.
- Carry out dynamometer tests and proving ground tests for vehicle equipped with the TE waste heat recovery system.
- Demonstrate fuel economy gain using TE waste heat recovery technology.

Summary

 Prototype TEGs are being assembled and installed on the test vehicle.

- Vehicle modifications and system integration are being completed as the TEGs are installed on the vehicle.
- Improvements in the performance of TE materials have been achieved, particularly for skutterudites.
- Skutterudite modules are being developed for the final prototype TEGs.