DESIGN OF HIGH ENERGY, HIGH PERFORMANCE CATHODE MATERIALS

MARCA M. DOEFF LAWRENCE BERKELEY NATIONAL LABORATORY MAY 16, 2013

ES 052

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

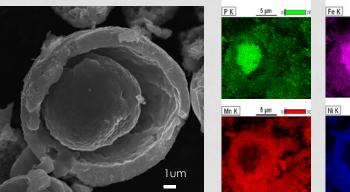
Timeline

- Project start date-10/1/2011
- Project end date- 9/30/2015
- 40% complete

Budget

- Total project funding
 - DOE share \$475k/yr (\$1900k total)
- Funding received in FY12 \$475k
- Funding for FY13
- \$475k

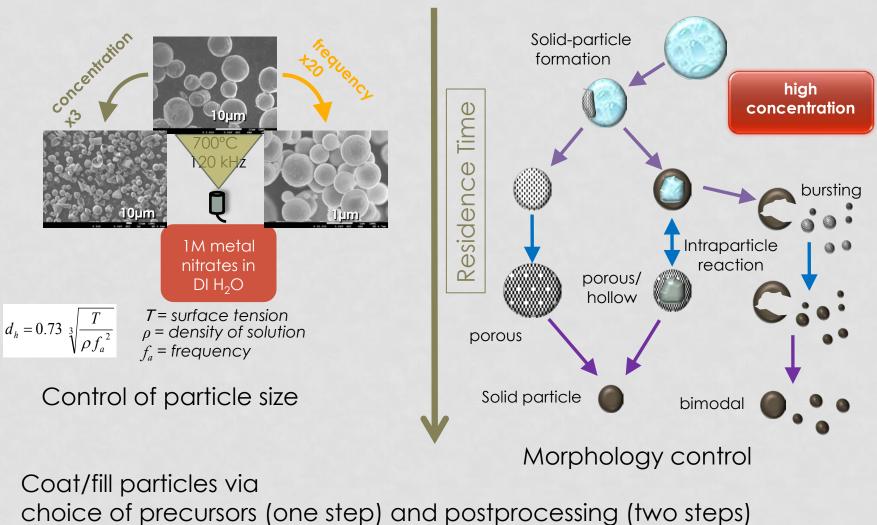
Barriers


- Barriers addressed
 - Energy Density
 - Cost
 - Cycle Life

Partners

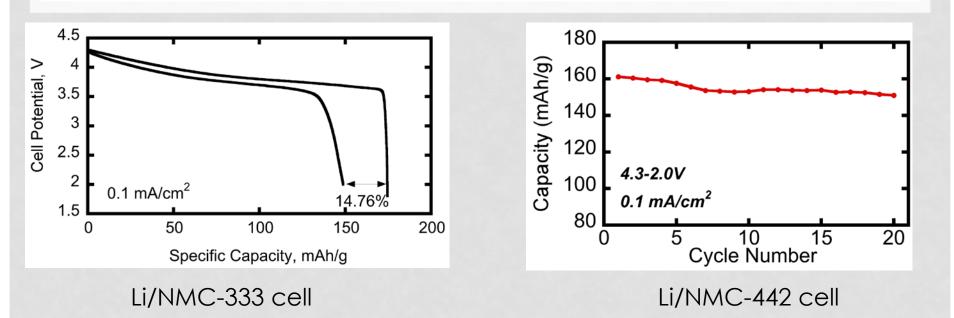
- Interactions/ collaborations
 - LBNL, SSRL, UCB
- Project lead=LBNL

RELEVANCE/OBJECTIVES


- Develop high energy, high performance cathode materials that cost less
 - Partial Ti-substitution of NMCs to reduce first cycle inefficiencies and obtain higher practical discharge capacities
 - Spray pyrolysis and related techniques to produce coated and composite materials containing high voltage electrode materials
 - Example: LiFePO₄@LiNi_{0.5}Mn_{1.5}O₄

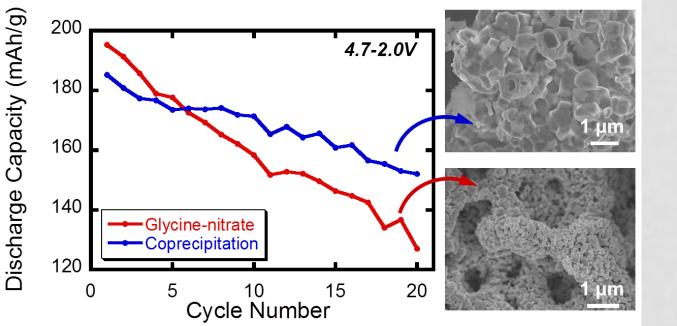
MILESTONES

Milestone	Due date	Status/Comments	
Composites consisting of spray- pyrolyzed LNMS hollow particles containing and coated with LiFePO ₄ or a manganese oxide spinel will be synthesized and electrochemically characterized.	9/13	On track. Will consider LiMnPO ₄ as an alternative, less reactive, coating.	
Thin film electrodes of a high energy Ti- substituted NMC suitable for synchrotron studies will be produced and electrochemically characterized.	9/13	Particulate electrodes with no binder/carbon may be suitable for synchrotron studies. Replace milestone.	


TECHNICAL APPROACH SPRAY PYROLYSIS

TECHNICAL APPROACH HIGH CAPACITY NMCS

- Synthesize substituted NMCs
 - Coprecipitation
 - Combustion synthesis
 - Spray pyrolysis (planned, not yet carried out)
- Characterize
 - Electrochemical (half cells)
 - Conventional physical methods
 - Synchrotron methods
- Goal is higher capacity without sacrificing stability, safety


TECHNICAL ACCOMPLISHMENTS/TYPICAL VOLTAGE CHARACTERISTICS OF NMCS

- 1st cycle inefficiency observed even with low charge voltage limits
- Half cell cycling with 4.3V charge limit is stable
- Typical capacity is ~160 mAh/g

NMC-333=Li[Ni_{1/3}Mn_{1/3}Co_{1/3}]O₂; NMC-442=Li[Ni_{0.4}Mn_{0.4}Co_{0.2}]O₂

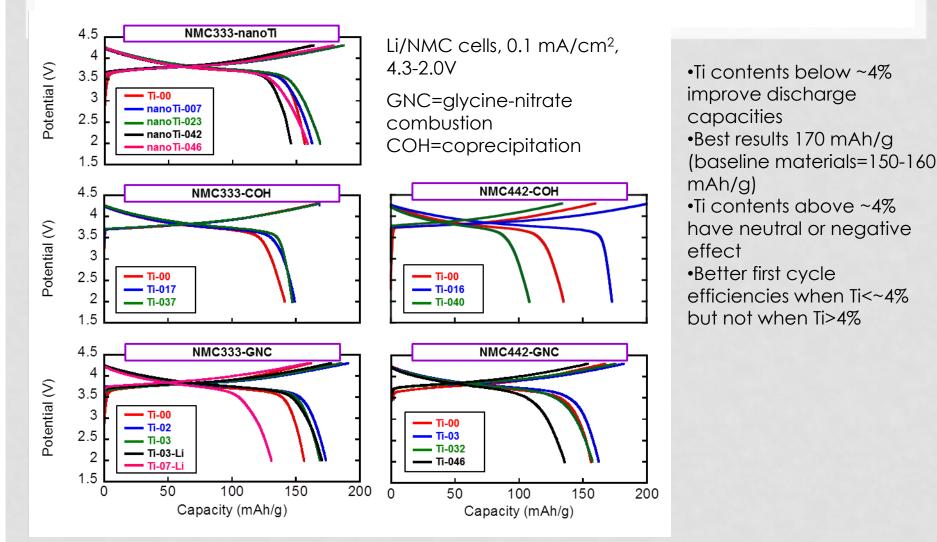
TECHNICAL ACCOMPLISHMENTS/CYCLING OF NMCS TO HIGHER POTENTIALS

Li/NMC-333 cells

- Higher capacity in half cells can be obtained by cycling to higher voltage limits
- This results in a rapid capacity fade
- Nanoparticulate electrode materials perform worse than conventional ones

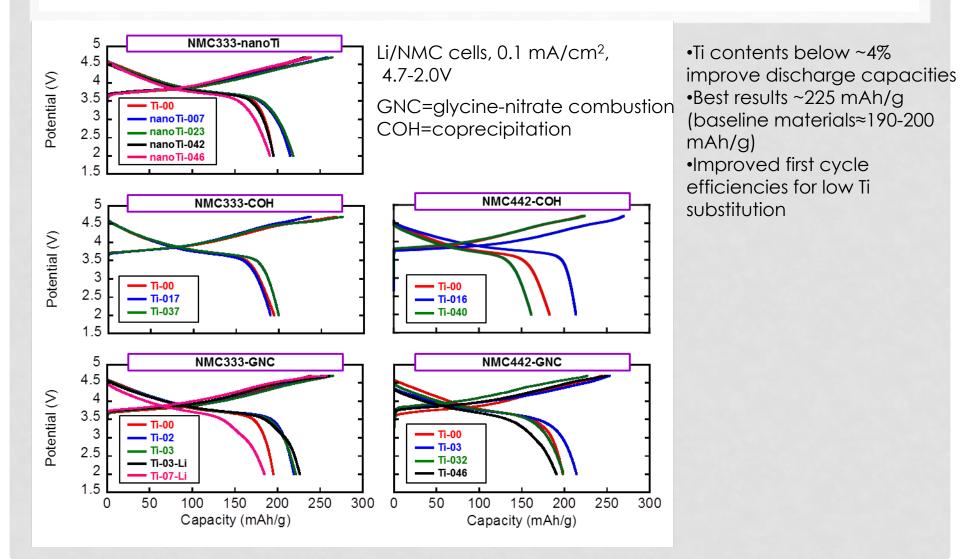
From "Electrode Materials for Lithium Ion Batteries" Kinson C. Kam and Marca M. Doeff, **Materials Matters**, Aldrich Materials Science, <u>7</u>(4), 56 (2012).

TECHNICAL ACCOMPLISHMENTS/TI-SUBSTITUTED NMCS

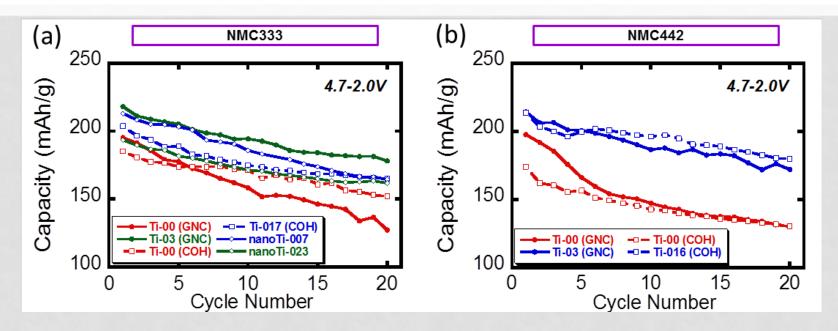

Li/NMC-333 series cells

T1-00 Ti-02 TH03-L 4.5 4.5 4.5 Potential (V) 4 3.5 3.5 3.5 3 З З 2.5 2.5 2.5 13.3% 2 2 2 1.5 50 100 250300 n. 150 200 50 200 300 50 n 100 150 250Π 100 150 200 250 300 Discharge Capacity (mAh/g) Discharge Capacity (mAh/g) Discharge Capacity (mAh/g)

- Partial Ti-substitution for Co in NMCs increases practical capacity
- Limit of substitution is ~4% Ti for Co
- Both Li-excess and Li-stoichiometric compounds can be prepared
- Capacities as high as 225 mAh/g seen
- Improvement is due to better first cycle efficiencies


Rom "Aliovalent Titanium Substitution in Layered Mixed Li Ni-Mn-Co Oxides for Lithium Battery Applications" Kinson Kam and Marca M. Doeff, J. Mater. Chem., 21, 9991 (2011).

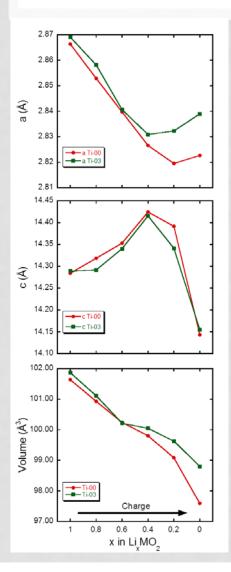
TECHNICAL ACCOMPLISHMENTS/NMC AND TI-SUBSTITUTED NMC VOLTAGE PROFILES-4.3-2.0V



From "Electrochemical and Physical Properties of Ti-substituted Layered Nickel Manganese Cobalt Oxide (NMC) Cathode Materials" Kinson C. Kam, Apurva Mehta, John T. Heron, and Marca M. Doeff, J. Electrochem. Soc. <u>159</u>, A1383 (2012).

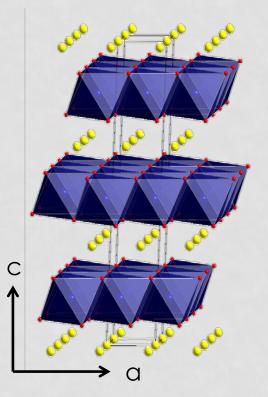
TECHNICAL ACCOMPLISHMENTS/NMC AND TI-SUBSTITUTED NMC VOLTAGE PROFILES-4.7-2.0V

TECHNICAL ACCOMPLISHMENTS/CYCLING OF SELECTED SAMPLES 4.7-2.0V



Red=baseline, Blue and Green =Ti substituted

•Ti-substituted electrodes cycle with better capacity retention
•More dramatic results with NMC-442 than with NMC-333
•NOTE: No difference between COH and GNC made samples for Tisubstituted NMC-442

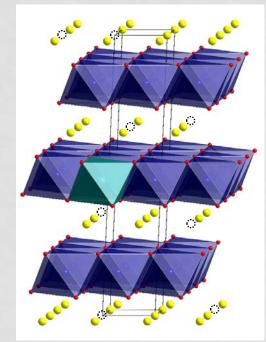

Best results with Ti-substituted 442-NMC (lower Co content)

TECHNICAL ACCOMPLISHMENTS/SYNCHROTRON XRD STUDIES OF ELECTRODES

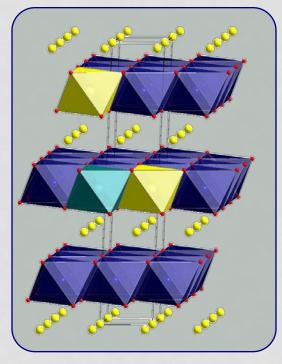
•a lattice parameter first decreases as delithiation proceeds, then increases

• c parameter first increases then decreases, past about x=0.4

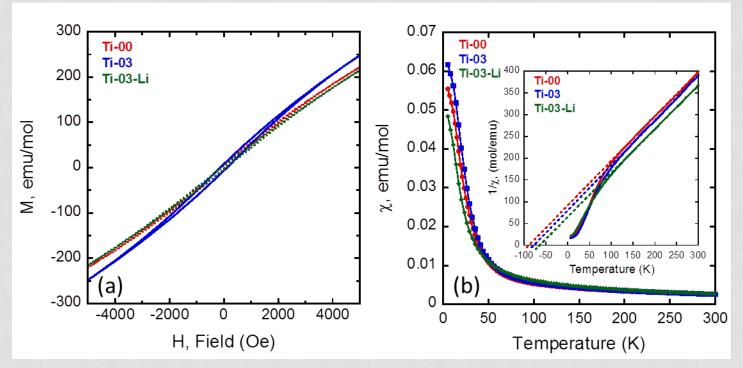
Total cell volume change is -4% for NMC333-Ti-0 and -3% for NMC333-Ti-03
Ti substitution limits changes in T.M. layer


TECHNICAL ACCOMPLISHMENTS/MECHANISM OF ALIOVALENT TI-SUBSTITUTION

Generation of Mn³⁺


• Stoichiometric samples

Li deficiency on 3a site


• Possible

Li/Ti on 3b site

• Li-excess samples

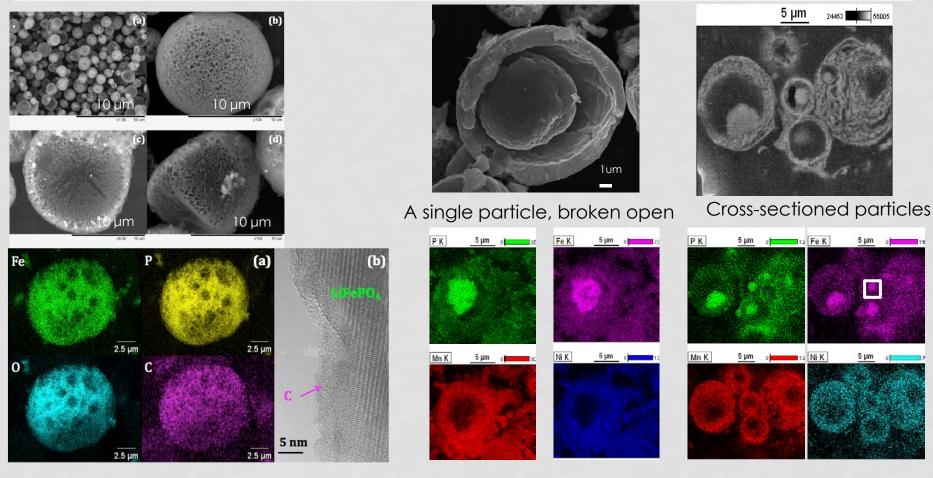
TECHNICAL ACCOMPLISHMENTS/MAGNETIC MEASUREMENTS

Magnetic curves (a) and temperature dependent magnetic susceptibility (b) of NMC333-Ti-00, NMC333-Ti-03, and NMC333-Ti-03-Li compounds collected in a magnetic field of 1000 Oe. The inset shows the reciprocal susceptibilities as a function of temperature along with the fits to the Curie-Weiss equation (dashed lines).

TECHNICAL ACCOMPLISHMENTS/MAGNETIC PARAMETERS

Table 3. Magnetic Parameters of the GNC333 compounds.

Compound	C, emu-K/mol	<i>θ, K</i>	μ_{exp}, μ_B
NMC333-Ti-0	0.991	-93.4	2.83
NMC333-Ti-03	0.962	-78.6	2.79
NMC333-Ti-03-Li	0.971	-66.9	2.80


Curie-Weiss equation: $\chi = C/(T - \theta)$ C=Curie constant, θ =Curie-Weiss temperature $C = N_a \mu^2 / k_b$

 N_a =Avogadro's number, k_b =Boltzmann constant

 $\mu = g\sqrt{S(S+1)}$: g=2.0023

Composition	Predicted µe _{xp}
No Mn ³⁺	2.77
3% Mn ³⁺	2.81

TECHNICAL ACCOMPLISHMENTS/HIGH PERFORMANCE CATHODE MATERIALS MADE BY SPRAY PYROLYSIS

Porous solid carbon-coated LiFePO₄ made in one step by spray pyrolysis See Doeff et al, **J. Mater. Chem.** <u>21</u>, 9984 (2011).

Hollow $\text{LiNi}_{0.5}\text{Mn}_{1.5}\text{O}_4$ spheres, filled and coated with LiFePO_4 , using spray pyrolysis followed by infiltration

COLLABORATION AND COORDINATION WITH OTHER INSTITUTIONS

- Jordi Cabana, Guoying Chen, Tom Richardson, LBNL-BATT synchrotron experiments at SSRL, high voltage spinel work
- Apurva Mehta, Stanford Synchrotron Radiation Lab (not in VT program), interpretation of synchrotron data and synchrotron experimental set-ups
- Alpesh Shukla, LBNL-BATT TEM studies
- Phil Ross (LBNL-BATT) and LBNL Advanced Light Source personnel (not in VT program)-synchrotron XPS experiments (planned work)
- Professor Mark Asta, Materials Sciences and Engineering Department, UCB (not in VT program) Computational studies on NMCs-Isaac Markus shared graduate student
- John Heron (graduate student, Prof. R. Ramesh, Materials Sciences and Engineering Department, UCB) not in VT program-magnetic measurements on NMCs
- Vince Battaglia, LBNL-BATT, cell development, testing of NMCs (planned work)

PROPOSED FUTURE WORK-FY13/14

Work on Ti-substituted NMCs will be emphasized

- Full evaluation of best Ti-substituted 442-NMC in full and half cells (different charge voltage limits, rates, cycling) with V. Battaglia (LBNL)
- Thermal and structural characterization of charged Ti-substituted NMCs (safety and oxygen release) with G. Chen (LBNL)
- Experiments and computational effort directed towards understanding origin of improved 1st cycle efficiency/enhanced capacity –surface or bulk effect?
 - Surface characterization of pristine and partially charged materials with spectroscopic methods (FTIR, Raman)
 - Surface characterization using synchrotron XPS and other synchrotron techniques (with P. Ross and J. Cabana of BATT/LBNL and ALS personnel (LBNL)
 - Computational work (Prof. M. Asta in MSE/UCB with Isaac Markus)
- Lower Co compositions
- Milestones will be rewritten to reflect new emphasis and plans for this task
- Spray pyrolysis work will continue at a lower level
 - Address reactivity issue between LiFePO₄ and LiNi_{0.5}Mn_{1.5}O₄ in LiFePO₄ @ LiNi_{0.5}Mn_{1.5}O₄ system (buffer layer, change heating regime)
 - Try LiMnPO₄ as filler/coating for hollow LiNi_{0.5}Mn_{1.5}O₄ spheres if this doesn't work
 - Attempt NMC and Ti-NMC spray pyrolysis with and without protective coatings

SUMMARY

- Aliovalent Ti-substitution in NMCs enhances practical capacities and improves capacity retention upon cycling to high voltage limits
 - Discharge capacities up to 225 mAh/g have been demonstrated
 - Capacity improvement is due to better first cycle efficiencies (possible surface effect)
 - Cycling improvement may be due, in part, to decreased changes in the a lattice parameter upon delithiation (bulk effect)
- This is a possible route to higher energy density if thermal stability and cycle life can be maintained
- Experiments are underway to evaluate this approach
- Spray pyrolysis can be used to synthesize hierarchically structured cathode materials including coated powders and composites, with good control of particle sizes and morphologies