Project ID: esp_13_thackeray

... for a brighter future

UChicago ► Argonne_{uc}

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Design and Evaluation of Novel High Capacity Cathode Materials

Christopher Johnson and Michael Thackeray Chemical Sciences and Engineering Division, Argonne

Annual Merit Review DOE Vehicle Technologies Program

Washington, D.C. May 21, 2009

Vehicle Technologies Program

This presentation does not contain any proprietary or confidential information.

Overview

Timeline

- Start date: FY08
- End date: On-going
- Percent complete: On-going

Budget

- Total project funding
 - 100% DOE
- FY08: \$400K
- FY09: \$300K
- FY10: \$400K

Barriers

- Barriers addressed:
 - Low energy
 - Cost
 - Abuse tolerance

Partners

- Co-investigators (Argonne):
 - S.-H. Kang
 - M. Balasubramanian

(Advanced Photon Source (APS))

- S. Pol (APS)
- J. Vaughey

Objectives

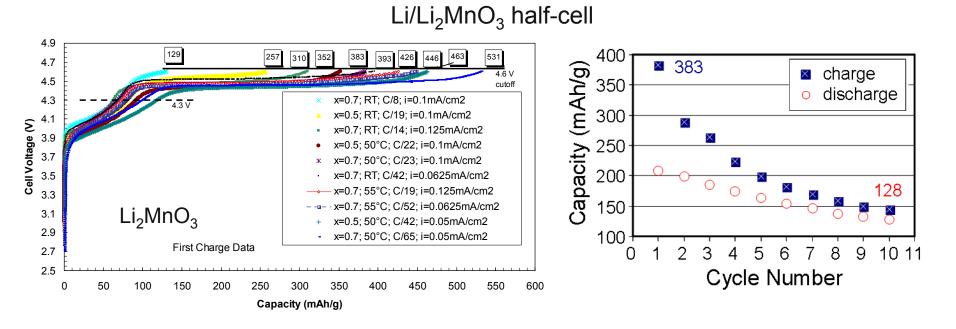
- Design and develop novel high capacity cathodes to meet the USABC's energy requirement for a 40-mile range PHEV
 - Improve the structural and morphological design, composition and performance of low cost Mn-based and Fe-based cathodes

Milestones (FY08-09)

- Synthesize, discover and evaluate novel high capacity cathodes – on going
- Initial technical target: >200 mAh/g for 100 cycles between 4.5 and 2.0 V without compromising power
- Evaluate promising cathode materials in Li-ion cell configuration against graphite, metal or intermetallic anodes
 – on going
- Determine structural and electrochemical properties, e.g., by in situ techniques at the Advanced Photon Source at Argonne – on going

Approach

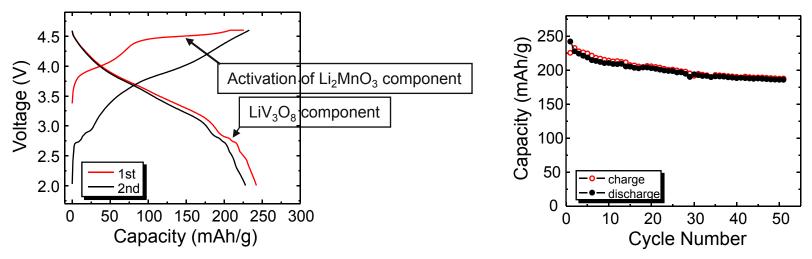
- Our approach is exploratory with a longer term outlook. The primary goal is to propose and evaluate new practical avenues to advance cathode materials rather than provide optimized solutions or performance.
- Basic concepts: 1) Use high potential (>4 V) electrochemical reactions to design new high capacity cathode materials, 2) use surplus lithium in precursor electrode structures to load carbon (graphite), metalor metal-alloy anode substrates, and 3) include a charged component in the cathode to accommodate the surplus lithium during discharge.
- Specifically, extend the concept of using Li₂MnO₃ (Li₂O•MnO₂) or structurally integrated xLi₂MnO₃•(1-x)LiMO₂ precursors (BATT Review 2008) as a source of surplus lithium to antifluorite Li₅FeO₄ (5Li₂O•Fe₂O₃) and Li₆MO₄ (3Li₂O•MO, M=Mn, Ni, Co) structures.
- Alternative approach to using stabilized lithium metal powder (SLMPTM, FMC Corporation) for lithiating anode materials.


Recap FY08: Electrochemical Activation of Li₂MnO₃

 $Li_2MnO_3 (Li_2O \bullet MnO_2) \xrightarrow{4.5-4.8 \text{ V}} MnO_2 + 2 \text{ Li} + 1/2O_2 (459 \text{ mAh/g})$

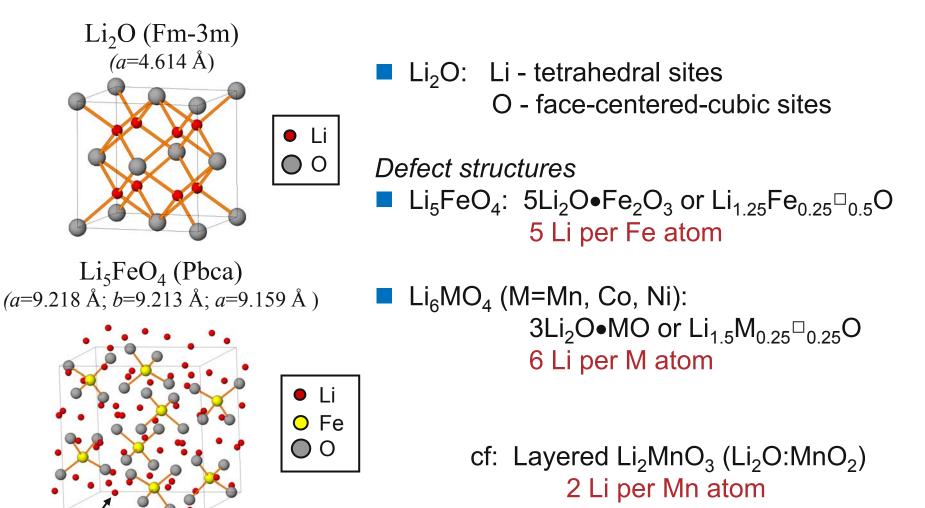
- Net loss is Li₂O
- Two Li⁺ ions removed during electrochemical activation (charge)
- One Li⁺ ion reinserted into residual MnO₂ component:
 - Li + $MnO_2 \rightarrow LiMnO_2$ (229 mAh/g, mass of parent electrode)
- Use surplus Li to load anode: C₆, metals or even bare substrate (Li metal)
- Complementary to lithium metal project (Vaughey and Dees)
- Use Li₂MnO₃ (or xLi₂MnO₃•(1-x)LiMO₂, M=Mn, Ni, Co) precursor in combination with high capacity charged cathodes, particularly where twoelectron transfer reactions are possible, e.g., V₂O₅ (442 mAh/g), Li_{1.2}V₃O₈ (372 mAh/g)
- Li_{1.2}V₃O₈ preferred 'test' cathode greater structural stability than V₂O₅

*Li*₂*MnO*₃*Precursor Electrodes*



- Electrochemical activation of Li₂MnO₃ by Li₂O removal at 4.5-5.0 V is a function of temperature and current rate
- Essentially all the Li can be removed at 50 °C at slow rates (C/42)
- MnO₂ component from activated Li₂MnO₃ does not operate effectively as a rechargeable electrode

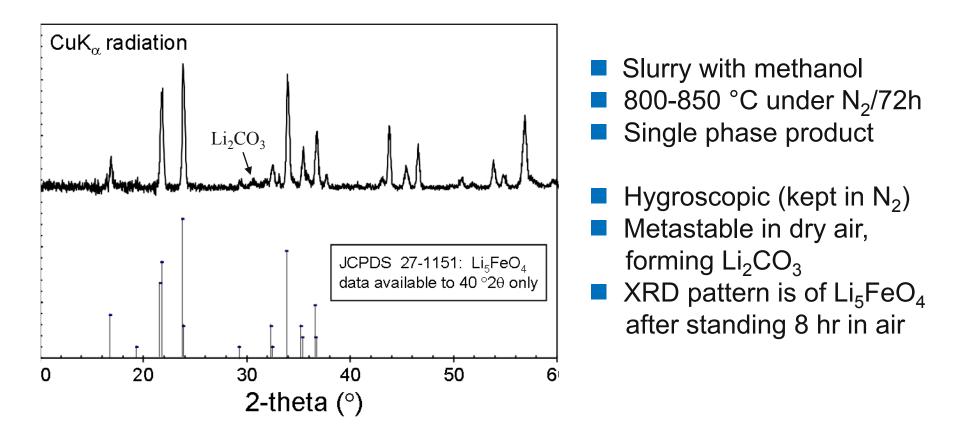
$0.5Li_{2}MnO_{3} \bullet 0.5LiMO_{2} Precursors \\ (M=Ni_{0.44}Co_{0.25}Mn_{0.31})$



0.5Li₂MnO₃•0.5LiMO₂ precursors provide more stable electrodes

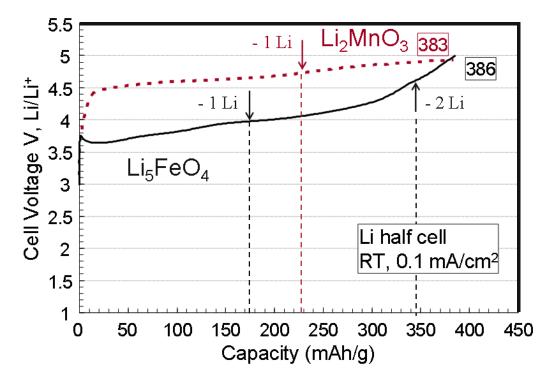
- Li_{1.2}V₃O₈ used as charged cathode: provides end-of-discharge indicator
- ~200 mAh/g (average) obtained for 50 cycles, 4.6 2.0 V, 0.05 mA/cm²
- Similar data for V_2O_5 (Manthiram et al., Electrochem Comm. 2008)
- Half cell data: Surplus Li at anode \Rightarrow need validation in full cells
- FY09: Emphasis placed on Li₅FeO₄: higher Li₂O content

Alternative High-Li₂O Content Precursors Antifluorite structures

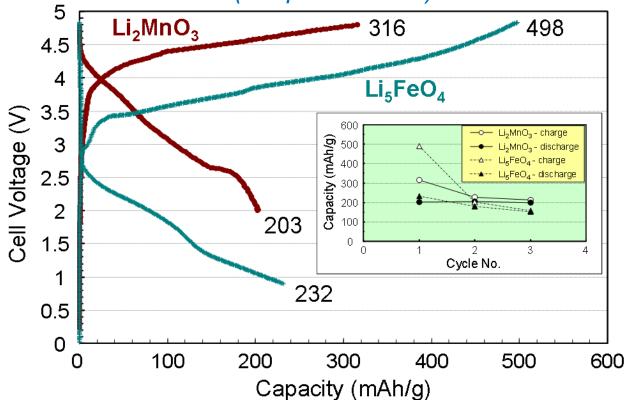

Abundant Li in defect structure provides good Li⁺ mobility

Vehicle Technologies Program

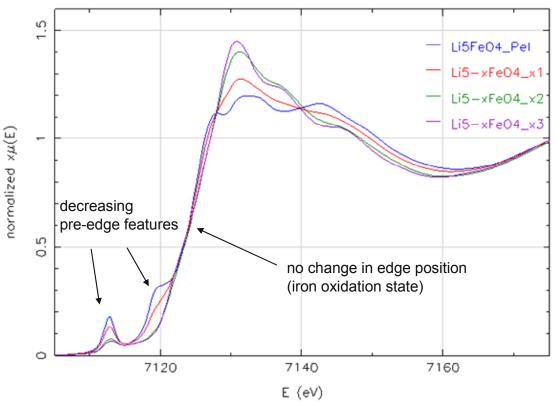
Synthesis and X-ray pattern of Li₅FeO₄


10 LiOH \cdot H₂O + Fe₂O₃ \rightarrow 2 Li₅FeO₄ + 15 H₂O

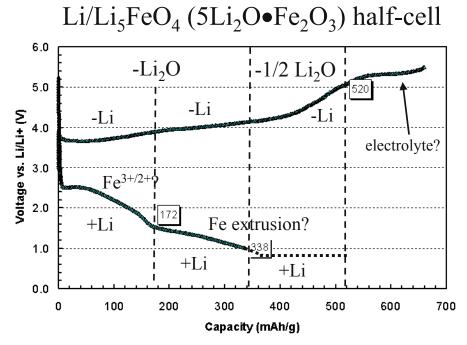
*Electrochemical Activation of Li*₅FeO₄ vs. Li₂MnO₃


Lithium extraction from Li₅FeO₄ easier than from Li₂MnO₃ (lower voltage)
 One Li₂O unit per Li₅FeO₄ is extracted below 4.5 V at 0.1 mA/cm²
 Li extraction with Fe ^{3+/4+} oxidation as per literature reports?*
 Li₂O extraction?

* Imanishi et al., J. Power Sources. 146, 21 (2005)

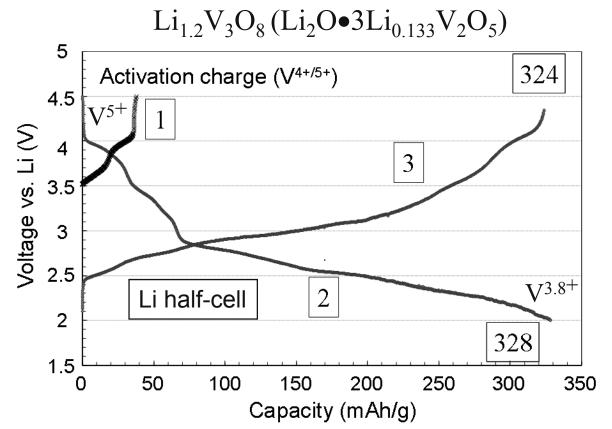

Li₂MnO₃ and Li₅FeO₄ Electrodes: Full Cell Data (Graphite anode)

Li₂MnO₃ and Li₅FeO₄ provide 200 mAh/g during early discharge cycles
 Li₅FeO₄ component suitable for end-of-discharge indicator when used in combination with higher potential, high capacity charged cathodes, e.g., Li_{1.2}V₃O₈


XANES Data: Delithiation of Li_{5-x}FeO₄

- Li₅FeO₄ samples chemically delithiated with NO₂BF₄/acetonitrile solution
- No apparent change in Fe³⁺ oxidation state \Rightarrow Li₂O extraction
- Gradual reduction in pre-edge peak height is consistent with conversion from tetrahedral Fe to octahedral coordination.
- EXAFS shows evidence of formation of edge-shared Fe-octahedra with increasing x.

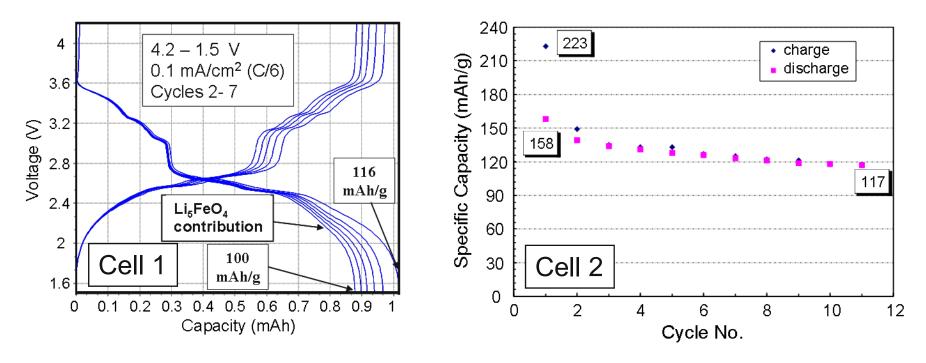
Activation Charge/Discharge Cycles: Li₅FeO₄


Proposed reaction

- 1. $Li_5FeO_4 \rightarrow "Li_2O \bullet FeO_{1.5}" (Li_2O \bullet 0.5Fe_2O_3) + 3 Li^+ + 0.75 O_2 + 3 e^-$ (520 mAh/g)
- 2. Li + "Li₂O•FeO_{1.5}" + $e^{-} \rightarrow$ "Li₂O•LiFeO_{1.5}" (2Li₂O•Li₂Fe₂O₃) (173 mAh/g)
- 3. 2 Li + "Li₂O•LiFeO_{1.5}" + $e^{-} \rightarrow$ "2.5 Li₂O + Fe" (346 mAh/g)

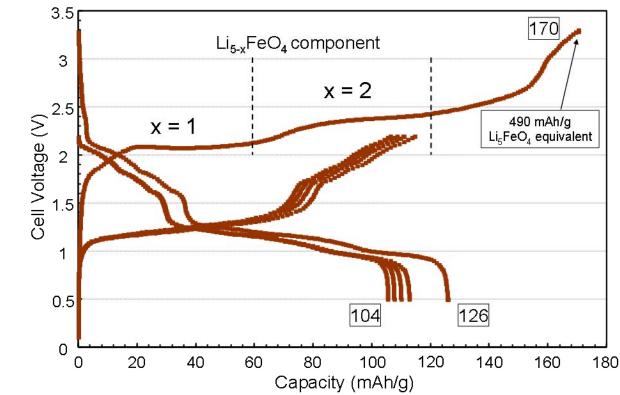
Notes: i) In practice, it is difficult to extract >3 Li from structure (>0.1 mA/cm²) ii) Li + $Li_5FeO_4 \rightarrow Li_6FeO_4$ should be possible (cf: Li_6MO_4 , M=Mn, Co, Ni)

Activation Charge/Discharge Cycles: Li_{1.2}V₃O₈



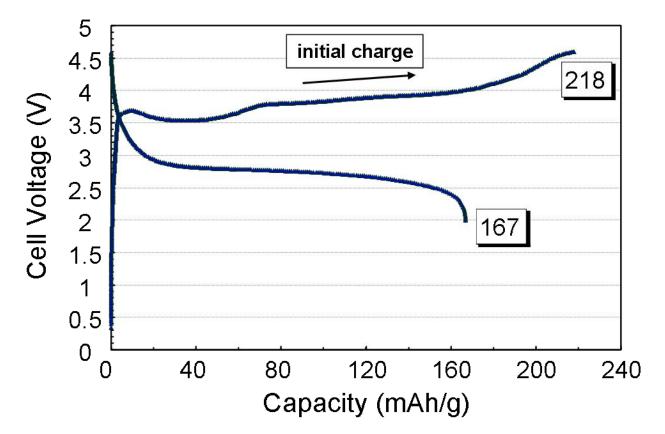
• 0.2 Li⁺ can be extracted during an initial charge ($V^{4+} \rightarrow V^{5+}$)

- It is difficult to extract Li₂O from Li_{1.2}V₃O₈ (Li₂O•3Li_{0.133}V₂O₅) below 5.0 V
- Li_{1.2}V₃O₈ can deliver 328 mAh/g between 4 and 2 V (3.5 Li inserted)


 $C_6/Li_5FeO_4-Li_{1.2}V_3O_8$ Li-Ion Cells

- 1:1 $Li_5FeO_4:Li_{1.2}V_3O_8$ ratio used (electrode balance not optimized)
- Capacities based on mass of parent electrode before activation (Li₂O loss)
- 120 cycles at C/2 rate achieved: 80 mAh/g (~240 mAh/g LiV₃O₈ component only)
- >99% coulombic efficiency
- Devise methods to exploit Fe redox couple more effectively in progress

 $Li_4Ti_5O_{12}/Li_5FeO_4-Li_{12}V_3O_8$ Li-lon Cell


Excellent demonstration of functionality of Li₅FeO₄ precursor

Capacities based on mass of parent electrode before activation (Li₂O loss)

Confirms 3-step process for lithium removal and the difficulty of removing
 >3 Li per Li₅FeO₄ unit (520 mAh/g)

Li₅FeO₄-MnO₂/C₆ Li-Ion Cell – preliminary data

Initial tests show better overall utilization than Li_{1.2}V₃O₈ charged cathode
 Cell chemistry (Li-Fe-Mn-O) appealing; capacity improvement required

Future Work - FY2009/FY2010

Exploit and evaluate properties of Li-rich antifluorite structures.

- electrochemical behavior
- chemical and thermal stability in charged and discharged states
- structural properties by XRD, XAS and other spectroscopic methods
- Extend studies of Li_5FeO_4 to Li_6MO_4 (M=Mn, Ni, Co) compounds
 - probe two-electron redox behavior of Ni^{2+/4+} and Co^{2+/4+} couples
 e.g., Li₆NiO₄ offers 328 mAh/g (without Li₂O removal)
- Optimize electrode balancing and available capacity
 - devise methods to extract more Li than currently possible
 - attempt to improve the electrochemical properties of the composite electrodes (antifluorite precursor + charged component) by manipulating the redox behavior of the precursor cations (Fe, Mn, Ni, Co) and the cycling stability of the activated electrode materials

Summary

- Li₂MnO₃-based electrodes can be used as a precursor to either offset irreversible capacity loss effects at the anode or for providing excess lithium that can react, after an initial charge to high potentials (>4.5 V), with a charged component in the parent electrode.
- Work in FY '09 was extended to evaluate other precursors with a high lithium content such as Li₅FeO₄. Work in 2008/09 focused predominantly on evaluating Li₅FeO₄ precursors with LiV₃O₈ and MnO₂ charged cathodes in lithium half cells and against graphite and Li₄Ti₅O₁₂ anodes.
- This approach has opened the door to the possibility of fabricating new electrode materials, whereby electrochemically active cathodes are created or modified *in situ* at moderate to high potentials during the initial charge reaction.

Acknowledgment

Support for this work from DOE-EERE, Office of Vehicle Technologies is gratefully acknowledged - David Howell

