

Design and Evaluation of Novel High Capacity Cathode Materials

Christopher S. Johnson
Chemical Sciences and Engineering Division
Argonne National Laboratory

May 9, 2011

Project ID: ES017

This presentation does not contain any proprietary or confidential information or otherwise restricted information.

Overview

Timeline

Start date: FY08

End date: On-going

Percent complete:

- project on-going

Budget

- Total project funding
 - 100% DOE

• FY10: \$300K

• FY11: \$300K

Barriers

- Low energy density
- Cost
- Abuse tolerance limitations

Partners

- Lead P.I. C. S. Johnson
- Collaborators (Argonne):
 - P. Kumta (Univ. or Pittsburgh)
 - S.-H. Kang, K. Gallagher, J. Vaughey, M.
 M. Thackeray (all of CSE)
 - M. Balasubramanian, S. Pol, N. Karan (Advanced Photon Source (all of APS))

Relevance

- New cathode materials are required to improve the energy density of Liion cells for transportation technologies.
- The cathode system in this project directly addresses the barriers to PHEVs and longer term EVs, which are low-energy density, cost and abuse tolerance limitations
- In this work, we are studying new novel cathode systems that utilize low-cost and abundant iron (Fe), vanadium (V) oxides, and Mn oxides. Such low-cost systems will allow a large ramp-up of materials production in order to satisfy demand as it increases.
- Iron oxides, vanadium oxides, and manganese oxides are amongst the most stable of transition metal oxides and will provide large abuse tolerance.
- This work provides an alternative route to high-energy density cells consisting of Ni and Co-based oxides by utilizing, instead, a pre-lithiation lithium-iron oxide source that is implemented to load lithium in advanced anode systems.

Objectives

Design and develop novel high capacity and high-energy cathode materials that are low cost, with high-thermal stability for PHEVs

- The implementation of layered transition metal oxides to Li batteries is well established, but this work is a novel designed approach to new high-energy Li-ion battery systems.
- Demonstrate the viability of this approach in a full battery system
 - Continue optimizing synthetic conditions to produce materials with the most favorable properties, such as surface area, tap density, phase purity, cost and safety
 - Continue the search for high-capacity charged cathodes with high-energy to combine with the Li₅FeO₄ (LFO) anti-fluourite pre-lithiation material
- Perform both physical property and electrochemical property measurements to understand cathode materials
 - Cycle the blended cathode material in Li half cells and show at least 40 cycles above 200 mAh/g
 - Conduct power rate tests and demonstrate a capacity of 150 mAh/g at C/1 rate
 - Cycle the blended cathode material with a high-performance Si anode
 - Evaluate the cathodes before and after cycling using microscopy methods

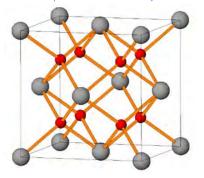
Milestones of FY11

- Synthesis of defect anti-fluorite (LFO) materials done
 - Process was examined using Fe₃O₄ and Li salt not preferred
 - LiOH hydrate is the preferred Li salt, Fe₂O₃ (hematite) is the preferred iron compd.
 - Effect of different contents of Li/Fe ratios initiated
- Synthesis of Co-substituted and Mn-substituted LFO cathode materials on-going
 - The whole series was synthesized i.e. from Li₅CoO₄ to (LFO); some with Mn
 - The effect of Co and Mn on performance and stability was checked –on-going
- Electrochemistry of LFO materials done
 - Impedance of LFO done
- Electrochemistry of Co- & Mn- -substituted LFO cathode materials on-going
 - Combination with 'charged' cathodes on-going
- Cell optimization with Mn-based 'charged', EMD –fines, α -MnO $_2$, λ -MnO $_2$ cathodes with LFO –on-going
 - Significant improvement of Mn-based electrodes, in particular α-MnO₂, through optimization efforts
 - Types : one electron Mn redox used
- Receipt of state-of-art Si-Carbon composite powder received and electrodes made done
- Evaluation of cathode materials thermal stability initiated
- Modeling/calculations of cathode-anode material balance and performance parameters initiated

Approach

- *This approach is new*. It is the implementation of an enabling technology that utilizes high-capacity (high energy) 'charged' cathodes in a *Li-Ion* cell configuration. The lithiation of a negative electrode occurs from a high-Li₂O content component precursor material that is incorporated in the initial cathode.
- •A high 'lithia/Li₂O' content material is co-blended or synthesized as a composite with a non-lithium containing 'charged' type positive electrode material.
 - -The Li₂O component is electrochemically oxidized out of the structure in an 'activation' first charge.
- •Examples of high-Li₂O content electroactive materials are Li₅ZO₄ (Z=Fe, Ga), Li₂M'O₃ (M'=Mn, Ti, Zr, Ru, Rh), & Li₆MO₄ (M=Co, Mn).
 - -The lithium released from the reaction is, in turn, intercalated into the negative electrode (i.e. graphite, graphene composites, intermetallics, Si-C composites, high-capacity TiO₂ (B bronze), TiO₂ nanotubes, Li₄Ti₅O₁₂, etc...).
- •The high-energy 'charged' containing positive electrode materials such as LiV_3O_8 , V_2O_5 , or MPO₄ (M=Fe, Mn, Co, Ni: delithiated olivines), and others such as, EMD-f, α -MnO₂, and λ -MnO₂ are subsequently cycled, starting on the first discharge.
 - -Mn is preferred over V because of toxicity issues

Approach (cont'd)

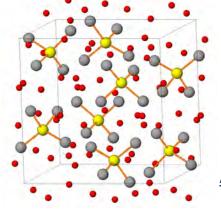

- The system studied in this work project consists of a blend of LFO MnO₂ cathode materials.
 - In composite 'lithia' notation, the above compound may be rewritten as: $[(5Li_2O \bullet Fe_2O_3) \bullet (MnO_2)]$, in order to help show the large amount of sacrificial lithium that the lithia-component precursor can yield.
- This strategy is expected to :
 - 1. Allow the use of ultra-high capacity anodes such as Si-C nanocomposites to be used, despite their large first cycle irreversible capacity.
 - 2. Enable the use of traditional battery materials in Li-ion cell configuration.
 - 3. Introduce stable iron oxides into Li-ion cell chemistry, which may be expected to improve the thermal stability of the battery.
 - 4. Utilize inexpensive and abundant Fe and Mn for Li-ion battery technology.

Background - Anti-fluorite Structures (Recap)

Li₅FeO₄ (LFO) as a prelithiation precursor

Li₂O (Fm-3m) (a=4.614 Å)

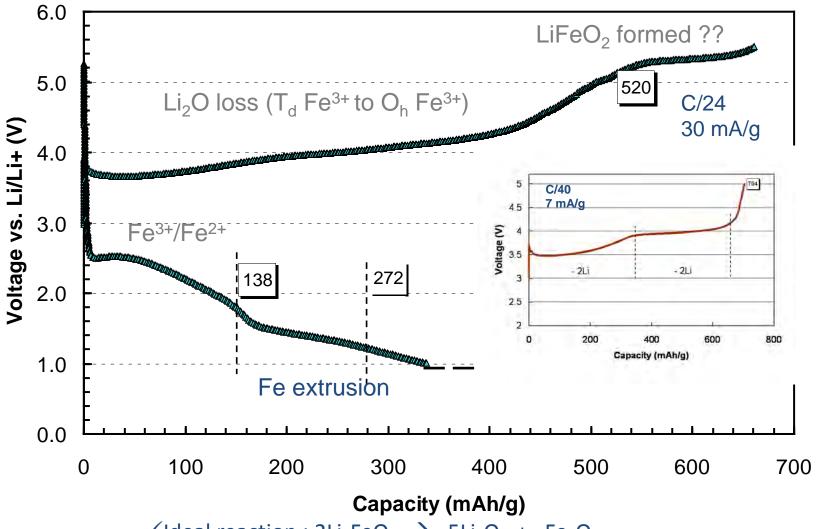
Li₂O: Li - tetrahedral sites


O - face-centered-cubic sites

Li₅FeO₄ (Pbca) (a=9.218 Å: b=9.213 Å: c=9.159 Å)

 Li_5FeO_4 : $5Li_2O \bullet Fe_2O_3$ or $Li_{1.25}Fe_{0.25} \square_{0.5}O$ 5 Li per Fe atom

 Li_6MO_4 (M=Mn, Co):


 $3Li_2O \bullet MO \text{ or } Li_{1.5}M_{0.25}\Box_{0.25}O$ 6 Li per M atom

Abundant Li in defect structure ideally provides good Li+ mobility

- ✓ Synthesis has been optimized; 2h synthesis in N₂ to produce Li₅FeO₄
- ✓ Related antifluorite materials have been synthesized : Co substitutions into Li₅FeO₄ completed

Voltage profile Li/LFO cell with discharge step

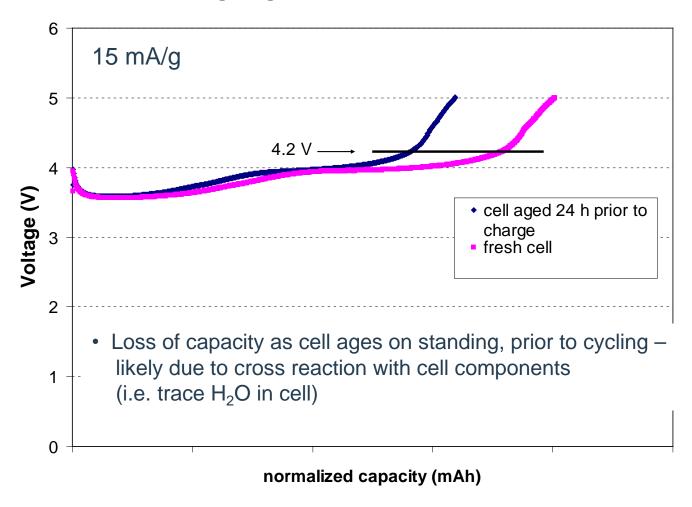
✓ Ideal reaction : $2Li_5FeO_4$ → $5Li_2O$ + Fe_2O_3 ✓ Large irreversible capacity loss on first charge due to oxygen loss effect

C. S. Johnson, et al., Chem. Mat. 22, (2010) 1263

Proposed reaction mechanism

1.
$$\text{Li}_5\text{Fe}^{(|||)}\text{O}_4$$
 (T_d Fe) \rightarrow $\text{Li}_4\text{Fe}^{(|V|)}\text{O}_4$ (T_d Fe) + Li^+ + e^- (173 mAh/g) unstable intermediate

2.
$$\text{Li}_{4}\text{Fe}^{(\text{IV})}\text{O}_{4}$$
 (T_{d} Fe) \rightarrow *, ^^
"LiFeO₂" (O_{h} Fe^(|||)) + 3 Li⁺ + 0.75 O₂ + 3 e⁻ (520 mAh/g)

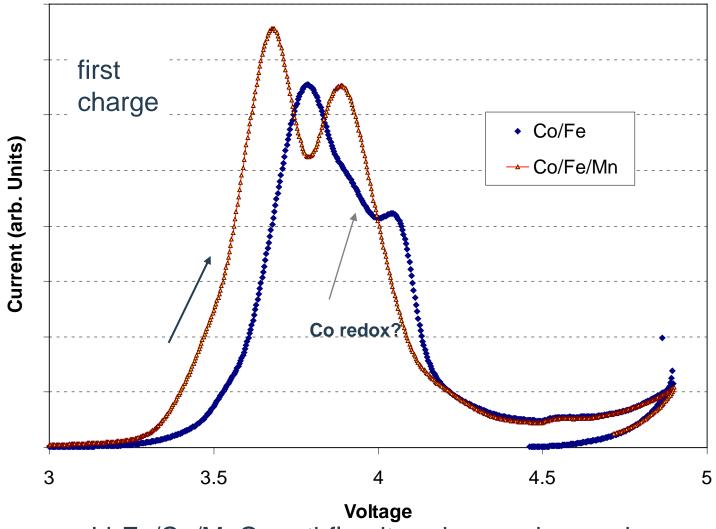

1.5Li₂O

$$^{\text{M}}$$
 $O^{2-} \rightarrow 1/2O_2 + 2 e^{-}$

- * This is an oxygen loss process; however, if Li₂O can reform with LiFeO₂ to form nanoscopic Li₅FeO₄, then this material has potential to be reversible.
- Need to capture O_2 loss within the lattice or with a sacrificial O_2 binding material, then reverse the process on discharge to form O^{2-} anions that go back into the lattice. A typical O_2 binding material are metallic porphryins. Ceria (Ce O_2) would work as well to make the reaction $O^{2-} \rightarrow 1/2O_2 + 2 e^-$ reversible.

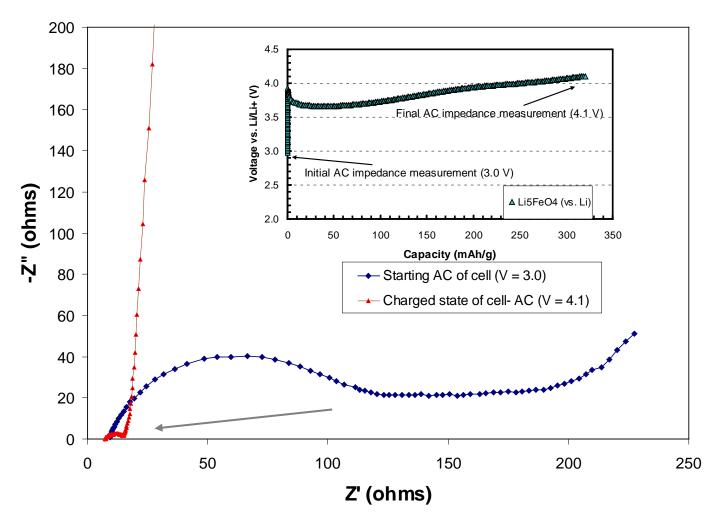
Li/LFO cell aging

• Coating LFO can increase stability of material in air


Cobalt-substitution into LFO

Samples synthesized

• In all cases single phase materials were synthesized, and will be tested in the upcoming months.


Cyclic Voltammetry: LFO derivatives

 Li₅Fe/Co/MnO₄ anti-fluorites show various redox processes during loss of Li₂O

Cell Impedance

• As lithia (Li₂O) is removed from LFO, the impedance drops significantly.

Reaction Design

[1]
$$\text{Li}_5\text{FeO}_4 + \text{Si-C}$$

$$3.0 - 4.3 \text{ V}$$
 $\text{Li}_4\text{Si-C} + \text{"LiFeO}_2\text{"} + \text{O}_2$

$$\sim 2.7 \text{ V}$$

$$\text{[2] } \text{Li}_4\text{Si-C} + \alpha - \text{MnO}_2$$

$$\text{Si-C} + \alpha - \text{LiMnO}_2$$

- -Specific energy (Wh/kg) can be increased because thinner laminates such as for Si-C composite anodes can be used in the full cell.
- -The benefits of increase in energy density are evident...-> next

Model - Li-ion configuration cell calculations

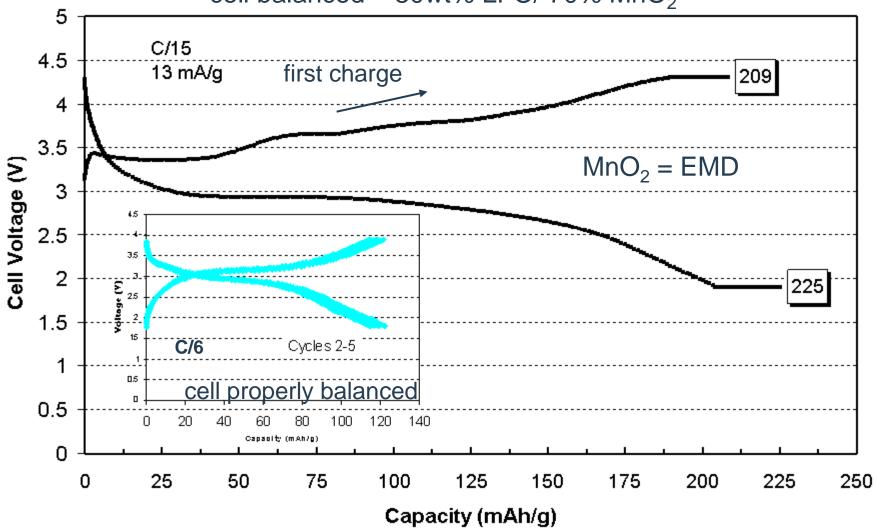
Example – Si/C composite anode (Kumta, J. Power Sources, 194 (2009) 1043) - 1200 mAh/g first cycle, 900 mAh/g reversible capacity... ...a 30% irreversible loss

•Neg. loading: **2** mg/cm², yields ~ 1.7 mAh/cm² (after cycling break-in) - > this is a very thin-high specific energy electrode...

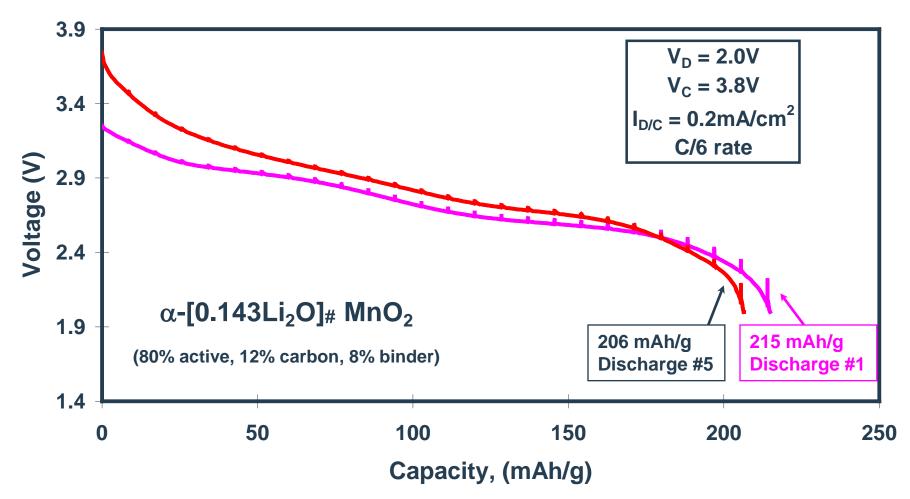
...paired with a 30%Li₅FeO₄/70%MnO₂ cathode (w:w)

- Pos. loading: 6.3 mg/cm², yields ~ 1.7 mAh/cm² (after cycling break-in)
- This overall lower negative and positive electrode weights translate into about ~ **1-fold** increase in energy density (Wh/kg).

Energy Densities of Li/MnO₂ Cells

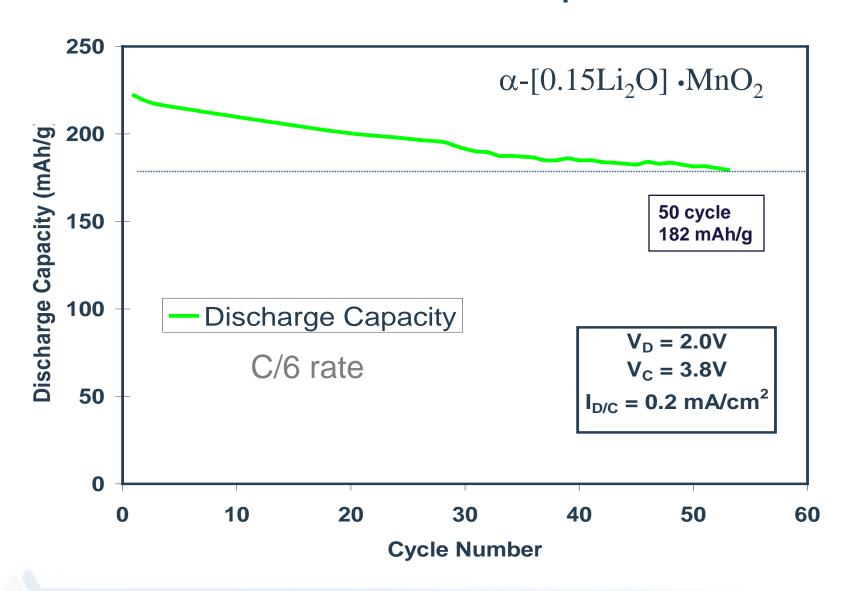

Structure Type	Average Discharge Voltage (V)	x range	Theory Capacity (mAh/g)	Practical Capacity (mAh/g)	% Electrode Utilization	Li per Mn	Energy Density Wh/kg
Li _x Mn ₂ O ₄ spinel	4	0 <u><</u> x <u><</u> 1	148	110-120	81%	0.4	480
Li _x MnO ₂	2.8 (3)	0 <u><</u> x <u><</u> 1	308	160-180	58%	0.6	504

• Objective – increase this capacity (> 200 mAh/g) and cell energy density – use improved α -MnO $_2$ as charged cathode

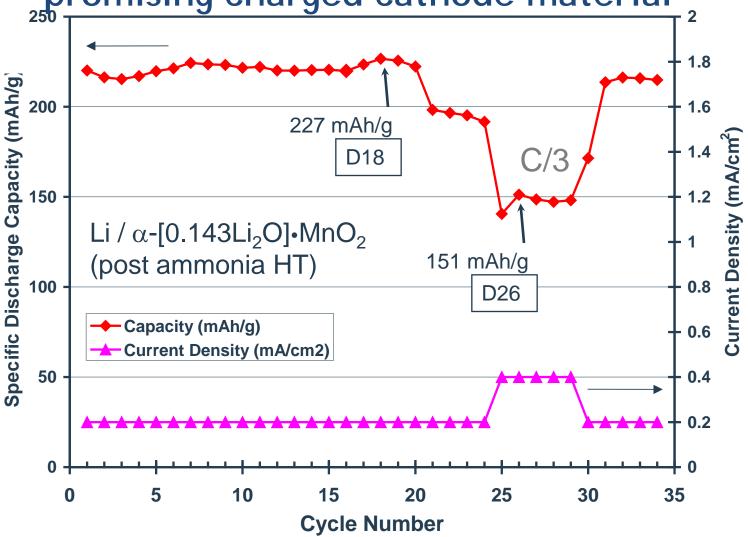


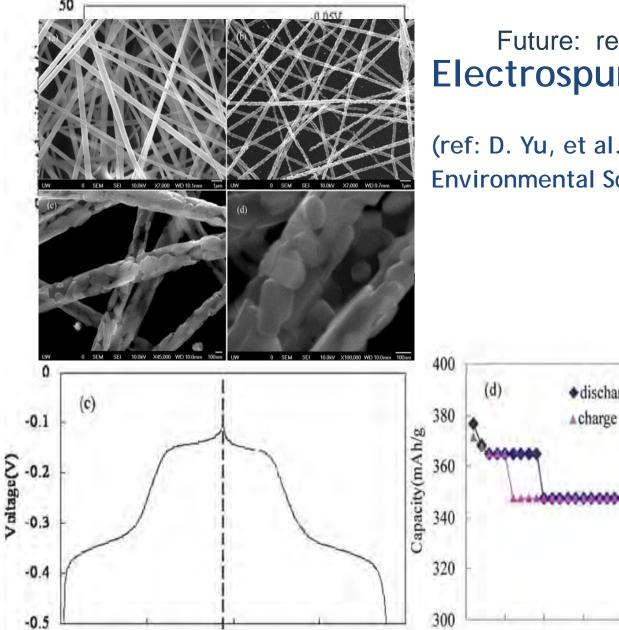
Voltage profile : full cell C/MnO₂-LFO

cell balanced – 30wt% LFO/ 70% MnO₂



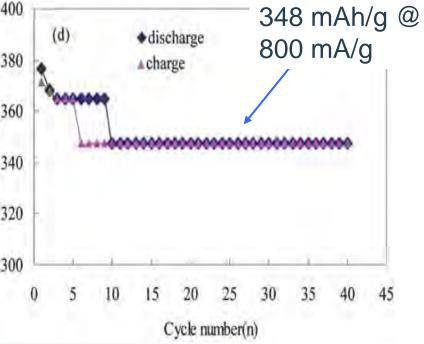
Electrochemical Activity of Lithia-doped (Stabilized) α-MnO₂ Material is promising for LFO-MnO₂ charged cathode




Capacity Fade of Lithia-stabilized α-MnO₂ Cathode Material must be Improved

Cycling Behavior of Lithia-stabilized/
Ammonia-treated α-MnO₂ Cathode Material
promising charged cathode material

600


400

Capacity(mAh/g)

200

Future: revisit V_2O_5 Electrospun V_2O_5 fibers

(ref: D. Yu, et al. Energy and Environmental Science, 4 (2011) 858)

Collaborations

Partners:

- Industry partner work-for-others program with a SBIR Company
 - Phase II project titled "Technical Evaluation and Testing of Prelithiation Cathodes for Li-ion Batteries": investigation involves the use of LFO precursor to load advanced anodes
- Government University Laboratory Partners -
 - BATT project "Si-Carbon nanocomposite anodes" (P.I. P. Kumta)
 - ES028 ABR project "Materials screening" (P.I. Dr. Wenquan Lu)
 - The Center of Nanoscale Materials (CNM) at Argonne is used to analyze materials.
 - Scientists: Dr. David Gozstola and Dr. Vic Maroni
 - The Advanced Photon Source (APS) at Argonne is used to analyze materials.
 - Scientists: Drs. Mali Balasubramanian, Swati V. Pol, and N. Karan.

Future work

- •New variable Fe/Co ratios for Li_xFe_{1-y}Co_yO₄ will be characterized and evaluated
 - the conditions of release of Li₂O will be better understood and optimized for maximal capacity
- •Other charged cathodes such as V_2O_5 (electrospun fibers), MnO₂ (various forms) and delithiated olivines MPO₄ (M=Fe, Mn, Co, Ni) will be evaluated in new blended cells.
 - the most promising cathodes will be improved by coatings or other methods
- •Prelithiation precursor cathode system LFO-charged cathode will be tested against high-capacity, high-energy anodes.
- •Advanced analytical methods (SEM, TEM) and diagnostic tools @APS & CNM (Raman) will be used to characterize new materials and will provide guidance for the project.
- •Collaborations with other ABR teams will continue.
 - Li-metal project (Vaughey, Dees), and material screening (Lu)

Summary & Conclusions

- Li₅FeO₄ and MnO₂ (EMD and α -MnO₂) identified and tested as a new chemistry for Liion cells; low cost, environmentally friendly and stable systems
 - Mechanism of lithium removal from LFO determined as Li₂O loss
 - Cycling yields about 128 mAh/g total electrode; 220 mAh/g first cycle
 - Calculations shows that > 200 mAh/g could be achieved based on optimized/blended ratios.
 - This may be a good system for high-capacity advanced anodes such as Si/Carbon composites.
 - Electrochemical and stability properties have been measured.
 - o Impedance decreases 15x on charge
 - o LFO ages quickly in cell
 - Synthesis has been optimized and cobalt substitutions have been initiated and testing begun.
 - MnO₂ optimization is underway and initial samples have been evaluated.
 - o Alpha-MnO₂ synthesized and studied as a charged cathode
 - Lithia-doping into MnO₂ key to improved Li cathode performance

