Deactivation of Accelerated Engine-Aged and Field-Aged SCR Catalysts and the Role of the DOC

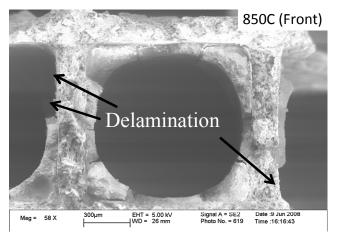
Adam Foster and Ke Nguyen

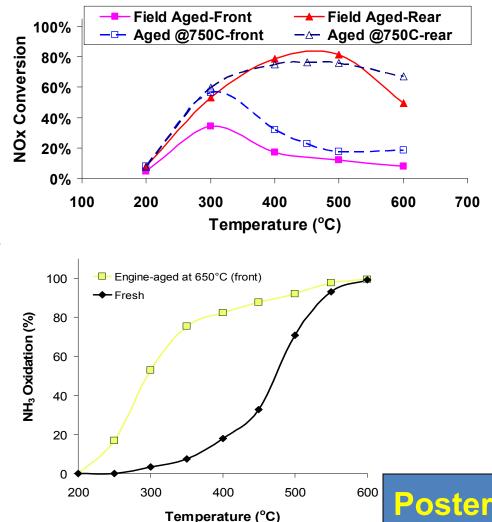
University of Tennessee – Knoxville

Bruce G. Bunting and Todd J. Toops

Oak Ridge National Laboratory

August 5, 2009


15th DEER Dearborn, MI



- Accelerated aging at ORNL/UT
 - Single cylinder engine
 - DOC→SCR→DPF
 - Aged at 650, 750, 850°C
- Field-aged devices obtained from Catalytic Solutions
 - End of life SCRs from bus service

SEM micrographs of high temperature aged SCR catalyst washcoat surfaces

2 Managed by UT-Battelle for the U.S. Department of Energy

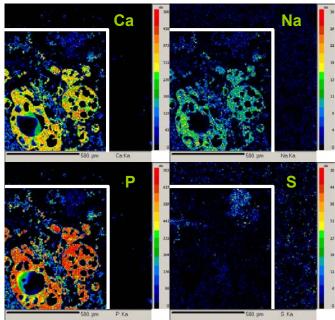
Characterization and Evaluation of Engine-Aged Emissions Control Devices using Biodiesel Fuel

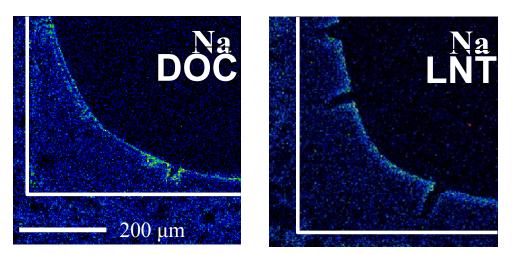
D. William Brookshear and Ke Nguyen University of Tennessee – Knoxville

Bruce G. Bunting and <u>Todd J. Toops</u> Oak Ridge National Laboratory

August 5, 2009

15th DEER Dearborn, MI




Determine impact that biodiesel-borne Na has on emissions control devices

- Engine- and Field-aged devices obtained from industrial partners and characterized
 - Goal: measure presence of Na in devices; determine if it is impacted performance

EPMA of ash plugs in DPF

4 Managed by UT-Battelle for the U.S. Department of Energy Na at washcoat surface of DOC & LNT

 Path forward: develop and implement an accelerated-aging technique allowing the isolated measurement of Na effects...including SCR

