Cummins/ORNL-FEERC CRADA: NO_x Control & Measurement Technology for Heavy-Duty Diesel Engines

W.P. Partridge (PI), J.-S. Choi, J.E. Parks, T.J. Toops, J.A. Pihl, N.A. Ottinger Oak Ridge National Laboratory

> N. Currier (PI), A. Yezerets, M. Cunningham, M. Ruth Cummins Inc.

> > Presenter: Bill Partridge partridgewp@ornl.gov

U.S. DOE Program Management Team: Ken Howden, Gurpreet Singh, Steve Goguen

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

CAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Project ID: ace_32_partridge

Overview

<u>Timeline</u>

- Start: FY1998
- Major Revisions: 2001, 03, 06
- Finish: September 2009
- % Complete: 90%
- Extension Planned

<u>Budget</u>

- Total project budget since 1998
 - DOE share: \$4,550k
 - Contractor share: \$4,550k
- Funding range: \$250-450k/year
- Funding received in FY08
 - \$450k
- Funding for FY09
 - \$400k

<u>Barriers</u>

- Emissions controls
 - Catalyst fundamentals, design & control, (& efficiency)
- Engine controls
 - Variability & diagnostics
 - Fast PM & O₂ diagnostics
- Durability
 - Fuel dilution of oil , (& efficiency)

<u>Partners</u>

- ORNL
- Cummins Inc.
- Informal coordination with CLEERS

Objectives

Engine-Systems:

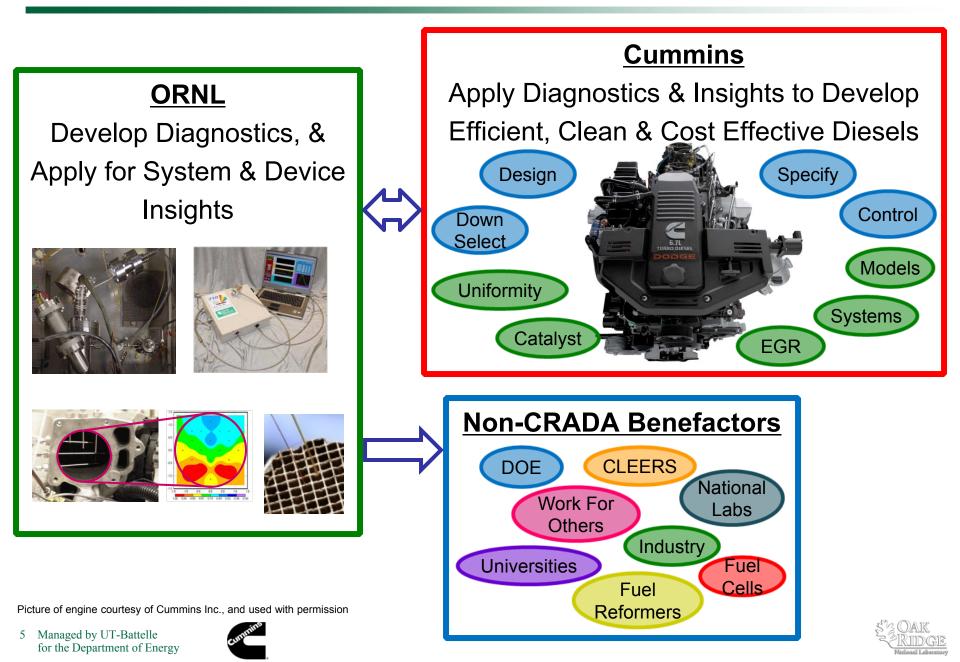
- Apply oil-dilution diagnostic on development engine at Cummins
 - Enable improved *durability, efficiency and emissions*
 - Lower development cost & shorten development time
- Develop and apply methods to quantify cylinder and cycle variations
 - Enable improved efficiency, control and emissions

Instrumentation & Bench:

- Characterize sulfation impact on LNT catalyst reactions
 - Intermediate NH₃ formation and utilization & water-gas-shift reaction (WGSR)
 - Improved catalyst design & control
 - Enhanced efficiency & emissions control
- Characterize NH₃ chemistry in LNT with oxygen-storage component
 - Umicore, CLEERS-reference catalyst
- Measure intra-SCR catalyst performance distributions

2008 Milestone:

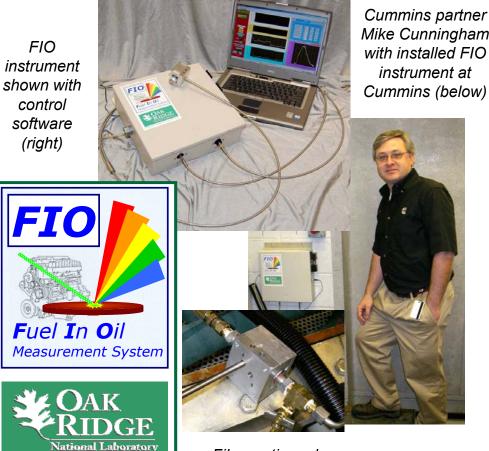
- Characterize sulfation effects on LNT reductant reactions
 - E.g., intermediate NH₃ formation & utilization, WGSR


2009 Milestone:

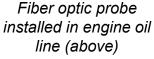
 Demonstrate measurement capability for characterizing axial performance of SCR catalyst

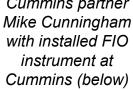
Approach

- Fuel-In-Oil Diagnostic
 - Enables improved engine calibration, durability, efficiency & emission
- Optical Backscatter Probe
 - Resolves cylinder-to-cylinder & cycle-to-cycle variability
 - Very relevant to high-EGR systems
 - Enables improved engine control & reduced emissions



Technical Accomplishments: 1 – Fuel-in-Oil Diagnostic

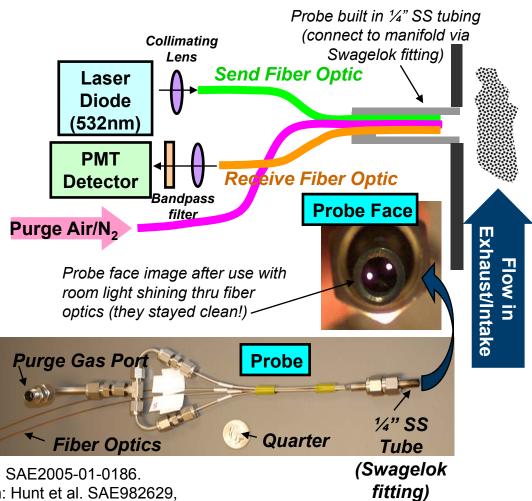

Managed by UT-Battelle for the Department of Energy


Fast oil-dilution measurement for improved calibrations

- Conventional ASTM
 - Extractive
 - Off-site (slow: days)
- FiO provides
 - Fast feedback: ~10min
 - More detailed mapping
 - Local optima revealed
 - Better calibrations!
 - Durability, efficiency, emissions
- CRADA work in FY07-08
- Cummins funded technology transfer 7 Managed by UT-Battelle for the Department of Energy

Fuel-in-Oil Transferred to Cummins

Technical Accomplishments: 2a – Fast PM Diagnostic

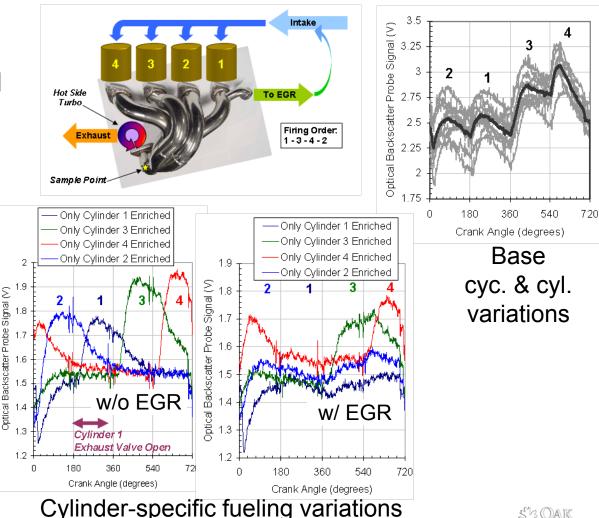

Optical Backscatter Probe

Measures engine variations for improved emissions & efficiency

- Objective
 - Develop tool for rapid cycle- & cylinder-resolved PM emissions
 - Model after Fuel-in-Oil diagnostic
- Approach
 - Optical-based probe
 - Inexpensive to multiplex for multiple point measurements
 - Simple and easy to implement In comparison to other techniques*
- Purpose
 - rapid feedback to guide development

* Scattering: Tree et al., SAE940270. LII: Witze et al., SAE2005-01-0186. Extinction: Scherrer et al., SAE810181. Polarization: Hunt et al. SAE982629,

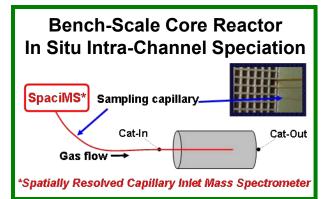
Optical Backscatter Probe Demonstrated on Diesel Engine

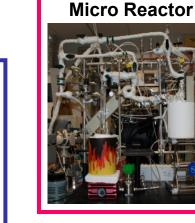


Technical Accomplishments: 2b – <u>Fast PM Diagnostic</u>

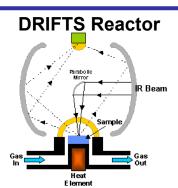
- Baseline cylinder & cycle variations resolved
 - Cylinders 3 & 4 PM higher
 - ~ 20% cyc-to-cyc variations
- Fueling variations resolved
- EGR is from cyl.s 1 & 2
- OBP applications:
 - Dispersion mapping
 - Transient EGR feedback
 - Load transients
 - Impact of design changes
 - Mitigation strategies
 - Improved control and reduced emissions
- More work to do:
 - Improved sensitivity
- 9 Managed by UT-Battelle for the Department of Energy
- tummins

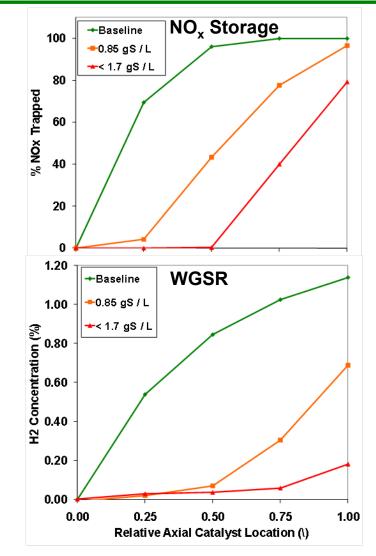
Cylinder- & Cycle-Resolved PM Measurements Demonstrated


Technical Accomplishments: *Instrumentation & Bench*


- Intra-catalyst distributed measurements
 - Provide unique insights & practical solutions
 - SpaciMS received R&D100 and National FLC Awards
 - Further improved SpaciMS & other methodologies
- Sulfation impact on LNT Water Gas Shift Reaction
 - Improved catalyst models & control
 - Elucidates basic catalyst chemistry
 - Reduced regeneration & De-SO_x fuel penalty
- Sulfation impact on Intermediate Ammonia
 Formation and Utilization

 - Basic understanding of LNT regeneration
 - NH₃ management
 - Hybrid LNT-SCR system design
- Intermediate NH₃ modeling
- DeS Kinetics and Surface Sulfur Types
 - Joint w/ CLEERS




Technical Accomplishments: 3a – Catalyst Control

- Water Gas Shift Reaction:
 - $\text{ CO} + \text{H}_2\text{O} \rightarrow \text{H}_2 + \text{CO}_2$
 - Converts CO to H₂
 - Use for DeNO_x & DeSO_x
- Investigated 3 Sulfation levels
 0, 0.85 & <1.7 gS/L_{cat}
- Progressive NO_x storage loss
 - ~ plug like
 - Broadened storage
- WGSR-S front leads NO_x-S front
 WGSR more sensitive to S than

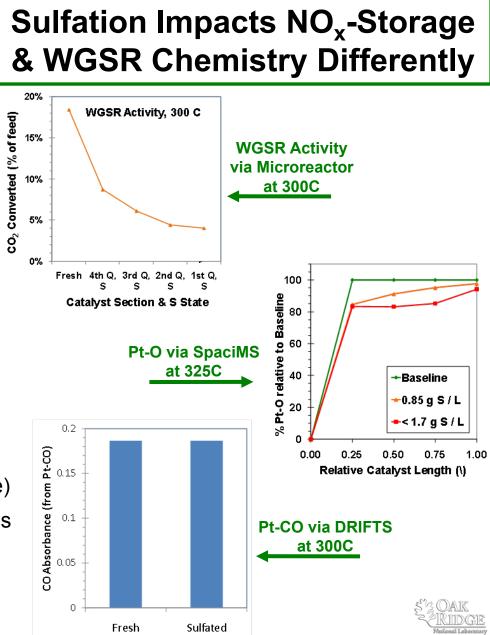
NO_x storage

WGSR is a Sensitive Indicator of LNT Catalyst State

Technical Accomplishments: 3b – Catalyst Control

• S has nonlinear impact on WGSR

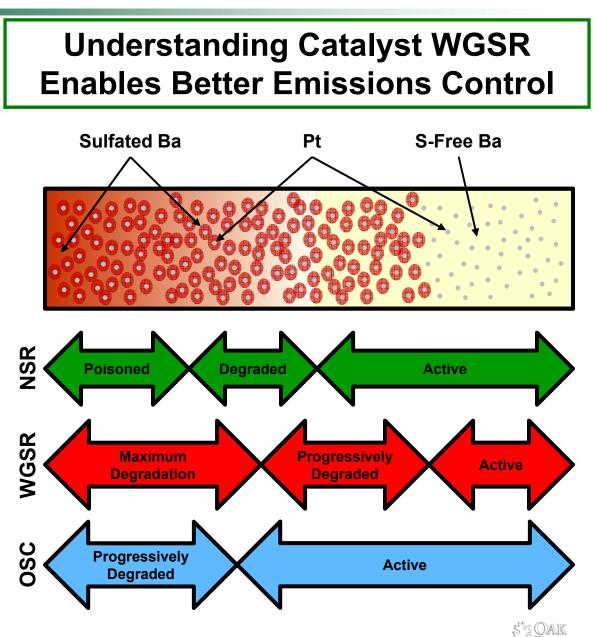
- Small initial S dose has a major impact on WGSR (Fresh vs. 4th Q)
- 4th Q has significant NO_x capacity


Little S-impact on Pt availability

- Minor S-impact on availability of Pt to O
 - 80-95% Pt-availability compared to fresh
- Availability of Pt to CO unchanged
- Pt sites are available after sulfation

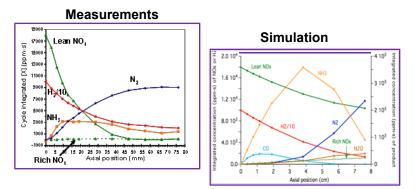
WGSR loss not due to Pt-S blocking

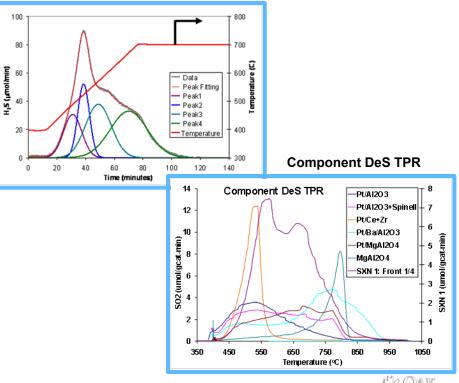
- At 300 C
- S must degrade WGSR via other mechanisms, e.g.:
 - CO or H_2O activation (Pt e- density change)
 - Inhibition of spillover between Pt and oxides
 - Blocking of Pt-support interfacial sites
 - Other...?



Technical Accomplishments: 3c – Catalyst Control

- Catalyst insights:
 - Sulfation impact on different LNT functions
 - Distribution of S impact
 - Conceptual understanding of LNT chemistry
- Use for catalyst design:
 Improved model accuracy
 - Device size/capacity
- Use for OBD & control:
 - Cummins Control Patent (US Patent App. 20080168824)
- Better emissions control & efficiency




Technical Accomplishments: 4 – NH₃ & DeSulfation

20

- Sulfation Impact on Intermediate NH₃
 - Experiments complete
 - Used Umicore CLEERS reference LNT catalyst
 - contains Ce oxygen storage component
 - Reducing & analyzing data
- Intermediate NH₃ Modeling
 - Joint w/ CLEERS
 - Investigate Direct-H₂ vs. Intermediate-NH₃ regeneration pathways
 - Working to build on CLEERS LNT model
- Surface Sulfur Types & DeS Kinetics
 - Joint w/ CI FERS
 - Using fully formulated Umicore catalyst
 - Studying reference catalyst components
 - Partial desulfation of catalyst sections
 - Correlating partial DeS w/ NO_x performance

Fully Formulated Catalyst DeS TPR

2009 Work:

- Investigate Optical Backscatter Probe in off-axis excitation/detection mode
- Fiber based diagnostics for cylinder-resolved variability measurements
- WGSR sulfation impacts work: origins of degradation
- Modeling intermediate NH₃ (joint w/ CLEERS)
 - Parallel vs. sequential regeneration pathways
- De-Sulfation kinetics and surface-S types (joint w/ CLEERS)
- Demonstrate measurement of distributed intra-SCR performance (milestone)
- Pursue CRADA continuation at Cummins' request

2010 Work:

- Apply diagnostics to quantify engine variability and mitigation strategies
- Characterize distributed response of SCR to operation changes

Summary

- Fuel-In-Oil Diagnostic delivered to Cummins
 - Being applied for *improved durability, efficiency and emissions*
- Cylinder- & cycle-resolved PM measurements demonstrated
 - Applicable to studying engine variations and mitigation strategies for *improved efficiency, control and emissions*
- Distributed intra-catalyst measurements drive practical advances
 - Intermediate NH₃ regeneration pathway
 - WGSR sulfation front leads that of NO_x storage (2008 milestone)
 - Drives design, modeling, specification and control (OBD) for *improved emissions* & efficiency
- CRADA approach consistently yields practical techniques and solutions
 - E.g., EGR mixing, Oil dilution, Catalyst & Engine control, Models, SpaciMS (
 ²⁰⁰⁸
 _{Award} FLC²⁰⁰⁹
 _{Award}), OBD
- Future work focuses on:
 - Studying engine variations and mitigation strategies
 - Advanced variation diagnostics
 - Distributed intra-SCR chemistry and performance (cf. 2008 Review feedback; 2009 milestone)
- Pursuing CRADA continuation at Cummins' request

