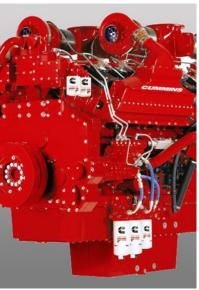


Cummins SuperTruck Program

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks


David Koeberlein- Principle Investigator Cummins Inc.

May 17, 2012

Project ID: ACE057

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Relevance - Program Objectives (DoE Vehicle Technologies Goals)

All Technologies must meet Current US EPA 2010 Emissions Standards and Transportation/Safety Standards

Objective 1: Engine Development

Engine system demonstration of 50% or greater BTE in a test cell at an operating condition indicative of a vehicle traveling on a road at 65 mph.

Objective 2: Vehicle Integration & Development

- **a**: Tractor-trailer vehicle demonstration of 50% or greater freight efficiency improvement (freight-ton-miles per gallon) over a defined drive cycle.
- **b**: Tractor-trailer vehicle demonstration of 68% freight efficiency improvement (freight-ton-miles per gallon) over a defined 24 hour duty cycle (above drive cycle + extended idle) representative of real world, line haul applications.

Objective 3: Engine Development

Technology scoping and demonstration of a 55% BTE engine system. Engine tests, component technologies, and model/analysis will be developed to a sufficient level to validate 55% BTE.

Baseline Vehicle and Engine: 2009 Peterbilt 386 Tractor and Cummins 15L ISX Engine

Overview - Program Schedule and Budget

Budget: DoE Share \$38.8M (49%)

Contractor Share \$40.3 M (51%)

\$20.2 M total DoE share spend to date

4 Year Program: April 2010 to April 2014

	2010 Q1 Q2 Q3 Q4	2011 Q1 Q2 Q3 Q4	2012 Q1 Q2 Q3 Q4	2013 Q1 Q2 Q3 Q4	2014 Q1 Q2 Q3 Q4
Objective 1: Test cell demonstration of 50% or greater BTE engine					
Objective 2a: Vehicle drive cycle demonstration of 50% or greater freight efficiency improvement					
Objective 2a: Vehicle 24 hour duty cycle demonstration of 68% or greater freight efficiency improvement					
Objective 3: Technology scoping and demonstration of a 55% BTE engine system.					Program - closeout

Overview - Program Barriers

- Engine Downspeed (Reduced Engine Speed)
 - Powertrain component response
 - Closed cycle efficiency gains
- High Conversion Efficiency NOx Aftertreatment
 - Fuel Efficient Thermal Management
- Vehicle and Engine System Weight Reduction
- Underhood Cooling with Waste Heat Recovery
- Powertrain Materials
 - Increased Peak Cylinder Pressure with Cost Effective Materials for Block and Head
 - Thermal Barrier Coatings for Reduced Heat Transfer
- Trailer Aerodynamic Devices that are Functional
- Parasitic power reductions

More vehicle specific details are included in Peterbilt's 2012 AMR presentation ARRA-087

Overview - Program Partners

Program Lead

Cummins Inc.

- Cummins Fuel Systems
- Cummins Electronics
- Cummins Turbo Technologies
- Cummins Emissions Solutions
- Cummins Filtration
- Modine
- VanDyne SuperTurbo Inc.
- Oak Ridge National Lab.
- Purdue University

Peterbilt Motors Company

- Eaton
- Delphi
- Modine
- Utility Trailer Manufacturing
- Bridgestone
- U.S. Xpress
- Dana
- Bergstrom
- Logena
- Bendix
- Garmin
- Goodyear

Participants – Who's doing what Roles and Responsibilities

Participant	Responsibility		
Cummins Inc.	Prime contractorTeam coordinationEngine systemVehicle system analysis		
Peterbilt Motors Co.	 Vehicle Build Coordination Vehicle Integration Tractor-Trailer Aero Freight efficiency testing		
Cummins Turbo Technology	Turbomachinery & WHR power turbine		
Cummins Fuel Systems	Fuel system		
Cummins Emissions Solutions	Aftertreatment		
Eaton	Advanced transmission		
Delphi	Solid Oxide Fuel Cell idle management technology		
Bendix	Reduced weight brake system and drive axle control		

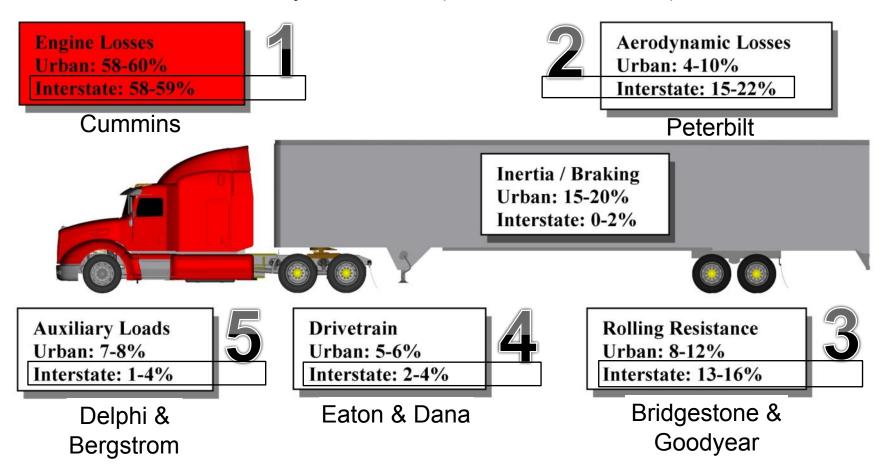
Participant	Responsibility		
Bridgestone & Goodyear	Low rolling resistance tires		
Modine	WHR heat exchanger & vehicle cooling module		
U.S. Xpress	End User ReviewDriver FeedbackCommercial Viability		
Oak Ridge National Laboratories	Fast response engine & AT diagnostic sensors		
Purdue University	Low temp combustion control models integrated with VVA		
VanDyne SuperTurbo	Turbocompounding/ Supercharging		
Utility Trailer	Lightweight Trailer Technology		
Dana	Lightweight Drivetrain Technology		
Bergstrom	HVAC		
Garmin	Driver interface/display		
Logena	Network interface		

Relevance - American Recovery and Reinvestment Act (ARRA) & VT ARRA Goals

ARRA Goal: Create and/or Retain Jobs

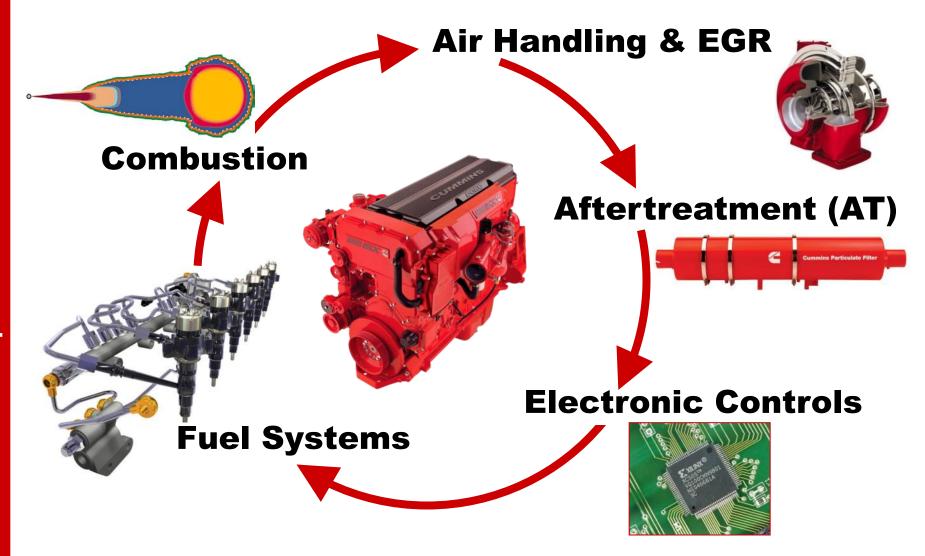
ti vi Coal. Ordato aria/or i totalii oobo			Projections	
Year	2010	2011	2012	2013
Full Time Equivalent	75.5	85	70	45

States: Indiana, Texas, Michigan, Wisconsin, Tennessee, Illinois, California, Colorado, New York


- ARRA Goal: Spur Economic Activity
 - Greater than \$40M total spend to date
- Goals align with VT Multi-Year Program Plan 2011-2015
 - Advanced Combustion Engine R&D (ACE R&D):
 - 50% HD engine thermal efficiency by 2015 (ref: VT MYPP 2.3.1)
 - Vehicle and Systems Simulation and Testing (VSST):
 - Freight efficiency improvement of 50% by 2015 (ref: VT MYPP 1.1)
- Invest in Long Term Economic Growth
 - Freight transport is essential for economic growth
 - Commercial viability assessment

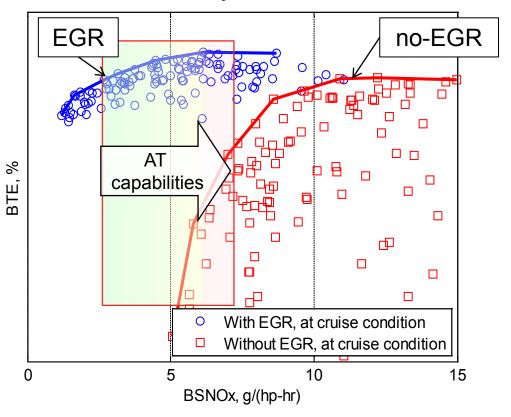
<u>Approach</u> – Vehicle Energy Analysis

Analysis of 27 Drive Cycles for Class 8 Vehicles with a Variety of Seasons (Summer, Winter, etc.)



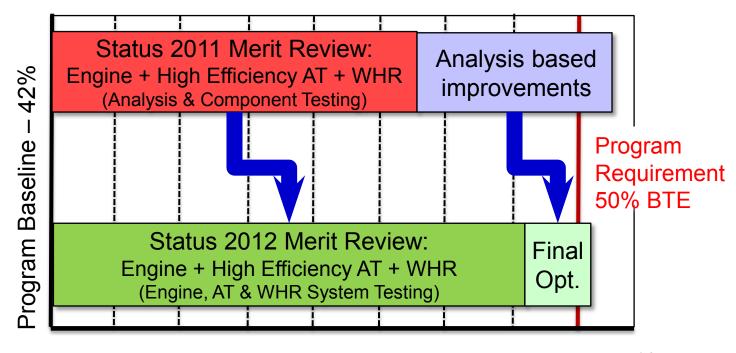
Analyze: Where is the energy going? Identify priority.

<u>Approach</u> - Integration of Cummins Component Technologies



<u>Technical Accomplishment</u> – Engine architecture decision

Question: Does a no-EGR engine architecture provide increased efficiency at lower system cost?


- Cummins data indicates an EGR solution yields best efficiency
- A unique no-EGR AT system design achieved compliance
- System cost analysis not favorable for no-EGR architecture

Technical Accomplishments - Improvements (Based on Engine, AT & WHR Testing)

Engine System Meets US EPA 2010 Emissions Regulation

42% 43% 44% 45% 46% 47% 48% 49% 50% 51%

Engine Brake Thermal Efficiency (%)

$$\eta_{brake} = \eta_{ig}\eta_{oc}\eta_m + \Delta_{WHR}$$

Engine demonstration showed improvements in all terms

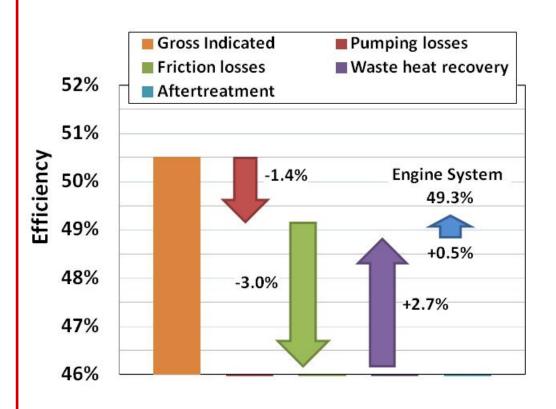
*WHR - Cummins Organic Rankine Cycle Waste Heat Recovery

<u>Technical Accomplishments</u> – 50% Thermal Efficiency Gains

Gross indicated gains

- Compr ratio increase
- Piston bowl shape
- Injector specification
- Calibration optimization

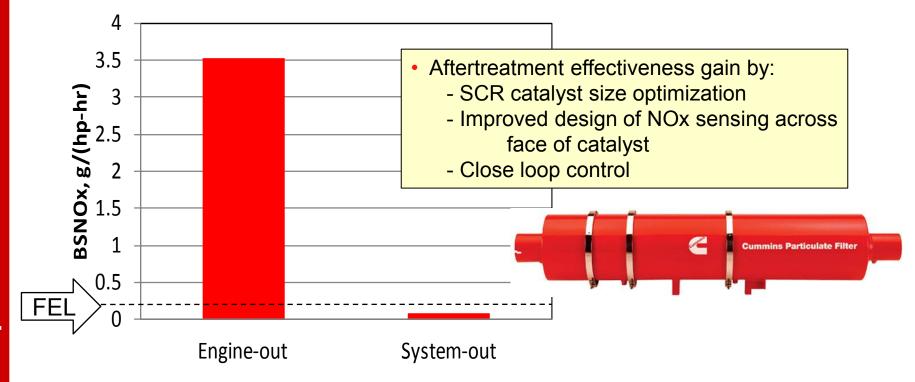
Gas flow improvements


- Lower dP EGR loop
- Turbocharger match

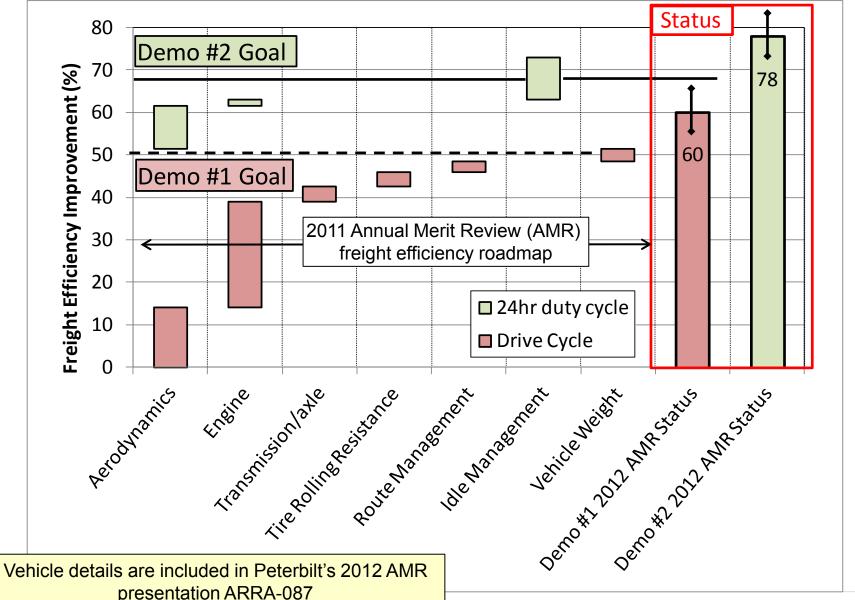
Parasitic reductions

- Cylinder kit friction
- Cooling pump power

WHR system

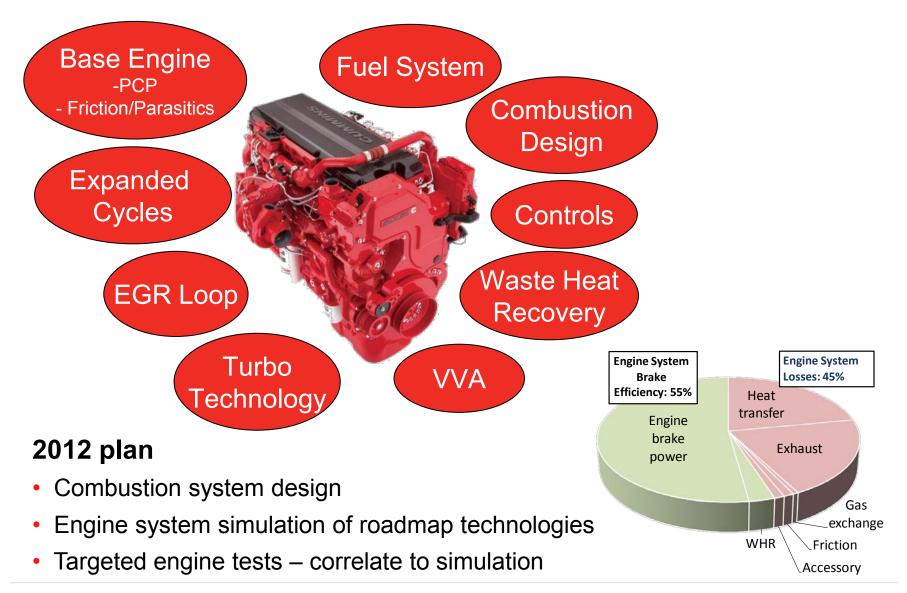

- EGR boiler/superheater
- Exhaust boiler
- Recuperator

<u>Technical Accomplishment</u> – Supplemental Emission Test (SET) Weighted Modal Cycle NOx Emissions



- Compliance to prevailing emissions 0.2 g/(hp-hr) demonstrated
- FTP requires additional calibration effort with optimized components

<u>Technical Accomplishment</u> – Freight Efficiency Status



<u>Technical Accomplishment</u> – 55% Engine Technology Scoping

Collaborations - ORNL & Purdue Participation

- ORNL
 - –Sensing methods for:
 - Combustion uniformity studies
 - Spatially and high response temporally resolved EGR variation and its minimization
 - Enables validation of CFD and analysis led design
 - AT performance studies
 - Enhanced SCR understanding to improve models & control methods fundamental to high efficiency AT

- Purdue University
 - Engine control for variable intake valve diesel
 - Effective Compression Ratio estimator model
 - Control-Oriented low temperature combustion timing model
 - Oxygen fraction [O2] estimator

Milestones and Technical Accomplishments

- March 2011 to March 2012 <u>Technical Accomplishments</u>
 - Analysis of Path to Target for Engine and Vehicle Efficiencies
 - Demonstrated the interim milestone toward 50% or greater BTE
 - Aerodynamic aid fabrication and initial vehicle testing
 - Initial vehicle tests of Cummins Waste Heat Recovery System
 - Initial testing of Advanced Transmission
 - Performance assessment of SOFC APU
- March 2012 to March 2013 Future Work
 - Engine calibration and optimization work
 - Vehicle Testing of Advanced Transmission
 - Testing of Tractor Trailer Aerodynamics Solution
 - Build and test for Vehicle Demonstration #1 (Objective 2a)
 - Design freeze for Vehicle Demonstration #2 (Objective 2b)
 - Initial vehicle calibration of Second Generation SOFC APU
 - 55% scoping analysis and targeted tests (Objective 3)

Summary

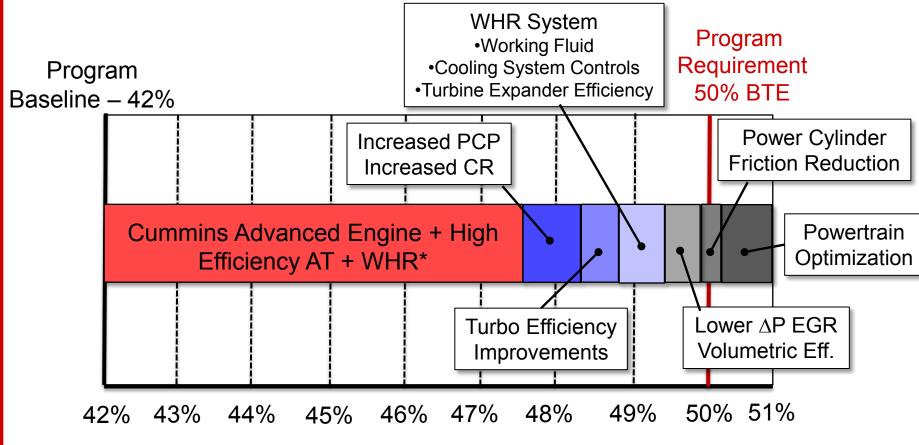
- Program remains on schedule
 - Meeting the ARRA and DoE VT MYPP goals
- Roadmaps updated for freight efficiency and 50% engine efficiency
- Studied alternative engine system architectures
 - Established an EGR engine architecture direction
- Demonstrated an interim milestone toward 50% or greater BTE
- Vehicle packaging and integration proceeding without major issues
- Build and testing of sub-systems are on the planned schedule
 - Cummins Waste Heat Recovery vehicle testing (Objective 2a)
 - Advanced transmission dynamometer and vehicle test (Objective 2a)
 - Solid Oxide Fuel Cell 2nd design iteration lab tests (Objective 2b)
 - Tractor-Trailer aerodynamic aids (Objective 2a)
- Developed working relationship with excellent vehicle and engine system delivery partners

Technical Back-Up Slides

Approach – Freight Efficiency Path to Target

	Drive Cycle Vehicle Demonstration	24 Hour Duty Cycle Vehicle Demonstration
Technology	Freight Efficiency Improvement (%)	Freight Efficiency Improvement (%)
Vehicle Aerodynamics	14%	24%
Engine	25.5%	27%
Transmission/ Axles	3.5%	3.5%
Rolling Resistance	3.5%	3.5%
Route Performance Management	2.5%	2.5%
ldle Management	N/A	10%
Vehicle Weight	3%	3%
Total	52%	73.5%
Target	50%	68.5%

Ref: 2011 AMR - Stanton



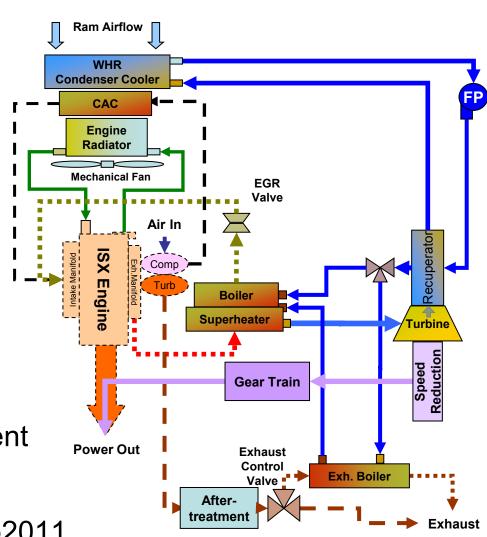
Improvements – <u>Technical Accomplishments</u> ,

(Based on Analysis and Engine Component Testing)

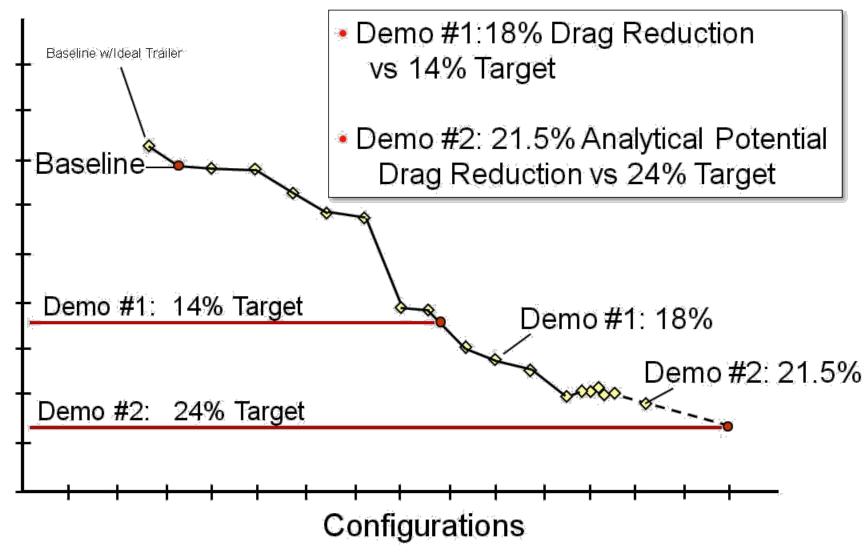
Engine System Meets US EPA 2010 Emissions Regulation

Engine Brake Thermal Efficiency (%)

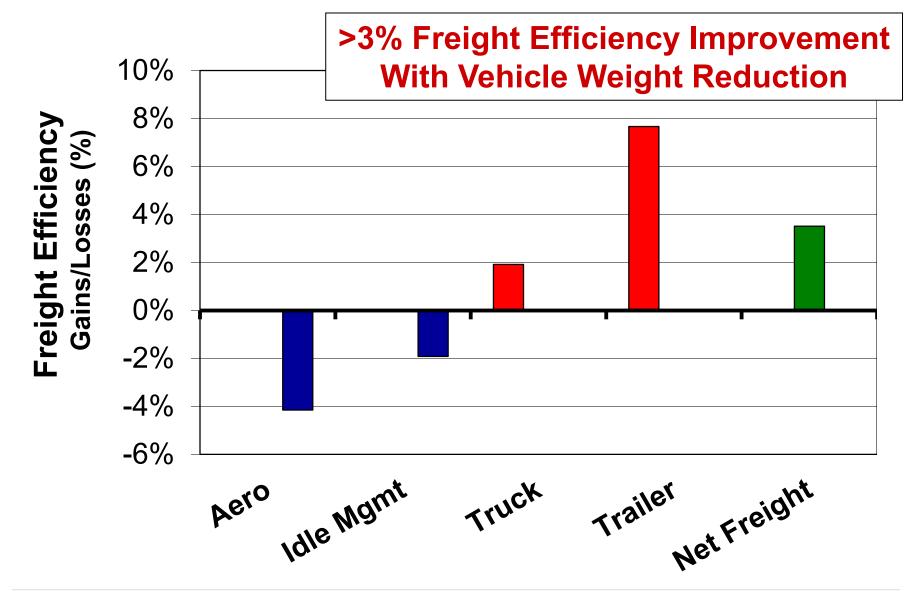
Ref: 2011 AMR - Stanton


*WHR - Cummins Organic Rankine Cycle Waste Heat Recovery

Cummins Waste Heat Recovery


- Organic Rankine Cycle
- Recovery of:
 - EGR
 - Exhaust heat
- Mechanical coupling of WHR power to engine
- Low global warming potential (GWP) working fluid refrigerant
- Fuel Economy improvement goal of ~6%
- 1st vehicle installation Sep2011

Vehicle Aerodynamic Results



^{*} Cd's Shown Are Adjusted to SAE J1252 Baseline Using % Average Deltas From 0 and 6 Degree CFD Runs

Vehicle Weight Reduction – Freight Efficiency Improvement

