
Cummins-ORNL\FEERC Combustion CRADA: Characterization & Reduction of Combustion Variations

W.P. Partridge (PI), J. Yoo, R.M. Connatser, Vitaly Prikhodko, Jim Parks Oak Ridge National Laboratory

S. Geckler (PI), A. Perfetto, A. Beck, M. Dane, C. Heitisimer, S. Guthrie, P. Helman Cummins Inc.

Presenter: Bill Partridge partridgewp@ornl.gov

2012 DOE Vehicle Technologies Program Annual Merit Review May17, 2012, Arlington, Virginia

U.S. DOE Program Management Team: Ken Howden, Gurpreet Singh, Steve Goguen

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

OAK RIDGE NATIONAL LABORATORY

Overview

<u>Timeline</u>

- Start: FY2010
- Current end date: Sept. 2012
- ~80% Complete

<u>Budget</u>

- 1:1 DOE:Cummins cost share
- DOE Funding:
 - FY2010: \$250k
 - FY2011: \$400k
 - FY2012: \$300k

Barriers

- Engine combustion
 - Intake-charge uniformity
 - Combustion uniformity
 - Incomplete combustion
- Engine controls
 - Variability & diagnostics
 - Lower penalty control methods
 - Diagnostics for demonstration of improved efficiency control methods
- Durability
 - Knock via EGR nonuniformities
 - Corrosion, erosion etc. from nonuniformity induced condensation

Partners

- ORNL & Cummins Inc.
- Cummins HD SuperTruck project

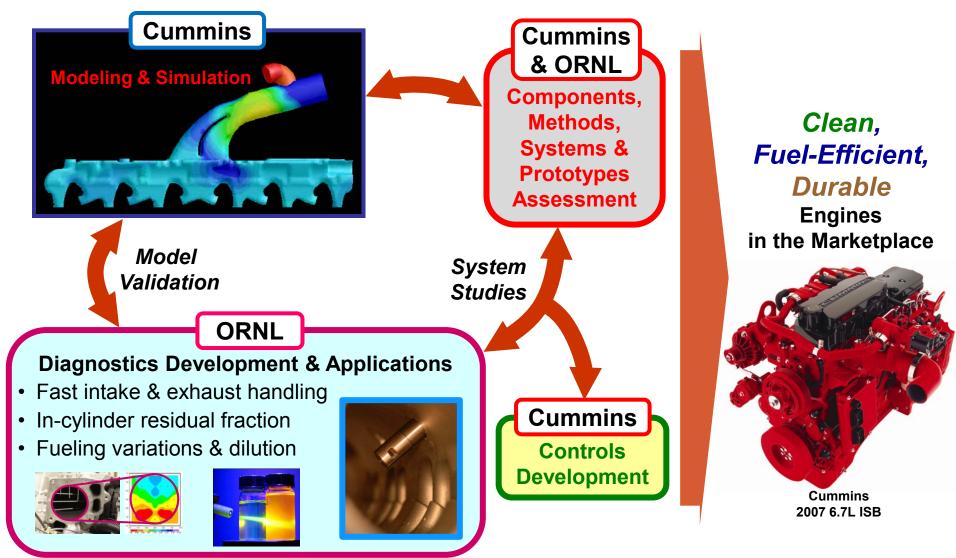
- Assess combustion uniformity
 - Non-uniformity origins & results, mitigation hardware and strategies
- Develop improved methods & tools for enhanced analysis

- Quantifying spatial & dynamic variations impacting combustion
- Assessment of CFD models
- Identify origins of combustion uniformity
- Assess strategies improving uniformity
- Improve overall efficiency & durability via better cylinder & cycle uniformity
- Better vehicles for consumers
 - Higher Efficiency: no limiting cylinder(s), more stable, better OBD control
 - *Improved Durability:* knock & EGR-loop condensate mitigation

Milestones

2011 Milestone:

Characterize intake EGR variations on development engine at


- **Cummins Technical Center**
 - Proof-of-principle focus
 - Assess & refine analysis techniques

2012 Milestones (on target for Sept. 2012 completion):

- Assess EGR uniformity under typical steady-state & transient conditions
 - Assess specific EGR injection/mixing designs
 - Spatiotemporal variations w/ conditions
 - Correlating EGR uniformity w/ combustion figures of merit

Approach: Improving Combustion Uniformity Challenges

Develop & apply advanced diagnostics for engine-system characterization to enable: <u>model validation</u>, <u>hardware development</u> & <u>controls</u> for fuel <u>efficient engines</u>

Technical Progress: <u>Summary</u>

EGR Diagnostic Demonstrated on Engine at Cummins Technical Center

- Induced fast (20ms) EGR transients resolved
- MIR-LED approach applicable to target engine applications

• Single-Port EGR Probe Developed

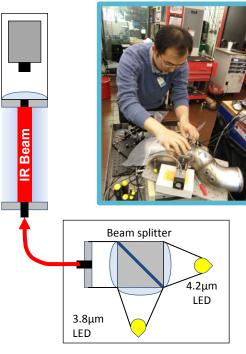
- Line-of-sight access no longer required
- Provides for broader engine applications
- For further-developed & -packaged systems

• EGR Non-Uniformity & Combustion Variations Resolved at ORNL

- Larger Cyl-1 EGR charge; EGR is spatially nonuniform at Cylinder-1 runner
- Cylinder-specific (~4 ms) EGR events resolved
- Fast instrument response enables broad development applications

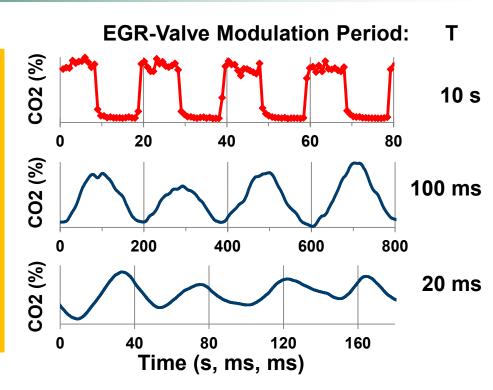
Development EGR Hardware & Control Assessed at Cummins

- 44% EGR uniformity improvement w/ selected architecture
- Other results CRADA-protected
- Data & insights applied to design, control and modeling at Cummins


Technical Progress: Proof-of-Principle at CTC (April '11)

Line-of-Sight

Engine Setup

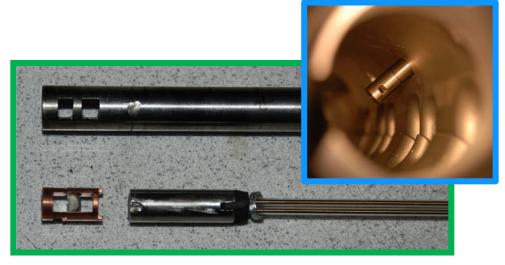

Gas

Detector

Measurement Setup

- Filtered Signal & Reference Mid-IR LEDs
- Separate modulation, common detector
- Hollow waveguide delivery
- Line-of-sight measurement
- Measure adjacent to EGR injection point

Engine proof-of-principle


- 20ms EGR fluctuations resolved
- Line-of-sight approach is limiting
 - Developed/packaged engines
 - Resolving spatial gradients

20ms Fluctuations Resolved....Need Single-Port Probe

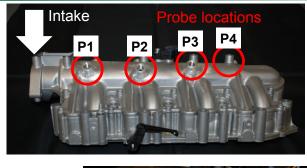
Technical Progress: <u>Developing Single-Port EGR Probe</u>

- 3/8-in OD tube housing
- 2x flow cells for improved detection
- Mount via Swagelok Union
 - NPT-3/8" Swage BoreThru
- Non-swaging ferrule for translation

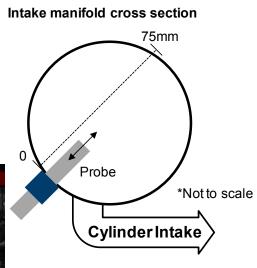
EGR Probe Enables Ready Application to Packaged Engines

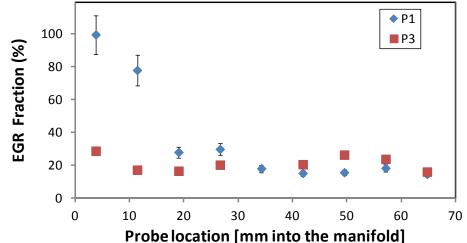
Technical Progress: EGR Probe Assessment at ORNL

Engine Platform

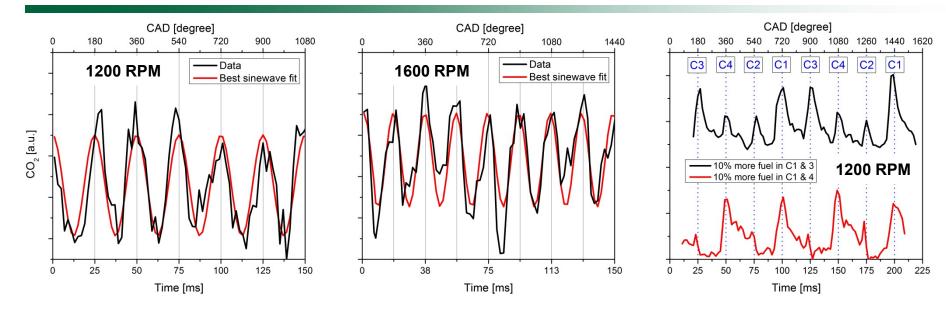

- 4-Cyl, GM 1.9L, DI Diesel
- High pressure cooled EGR

General Observations


- Withstand window fouling
 - Several hrs at dirtiest location (P1)
 - Entire day at cleaner locations (P3)
- Withstand vibrations


EGR Non-Uniformities Resolved

- Dramatic EGR spatial gradient at P1
 - EGR varies 20 to 100% !
 - EGR Highest at intake runner inlet
- EGR fully mixed by P3
- Cylinder 1 likely has higher EGR
 - Correlate w/ combustion merit in future work
- Particulate distribution mirrors EGR



Steady-State Spatial EGR Non-Uniformities Resolved

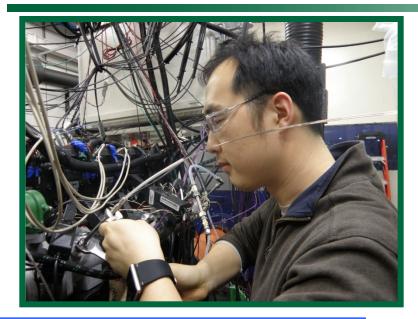
Technical Progress: Cylinder-Specific Dynamics Resolved

Fast fluctuations at constant EGR

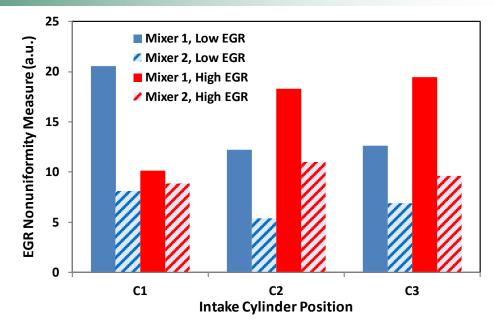
Synchronous w/ engine timing

Cylinder-selective fuel addition

- Cylinder firing order: 1-3-4-2
- Cylinder-specific CO₂ dynamics apparent
 - ca. 4-8 ms t_{10-90} response


Fast response has broad

development applications


- Closed-loop control implementation & evaluation
- Dynamic EGR charge impacts
 - Misfire & incomplete combustion
 - Knock
- Temporal EGR mixing

Fast EGR-Probe Enables Efficiency & Durability Advances

Technical Progress: EGR Assessment at CTC (Jan.'12)

- 2 EGR Mixer Designs assessed
- High & low EGR
- Uniformity & Design impact vary w/ location
- Mixer 2 ca. 44% more uniform overall
 - 54% \ 34% better at Low \ High EGR
- Other results CRADA protected
- Applied to design & modeling at Cummins

More 2012 Work Using Simultaneous Multi-EGR Probes

Collaborations & Coordination

Cummins

- CRADA Partner, Sam Geckler (Co-PI)

Cummins SuperTruck Program

- David Koeberlein (Director Advanced Engineering), Rick Booth (Technical Advisor, Gator/Natural Gas Controls Leader)
- CRADA & SuperTruck projects share monthly telecons
- Coordination of common development interests
- Use of CRADA-developed technologies
- Cooperative development of simultaneous multi-point EGR Probe diagnostic
 - Similar for in-cylinder measurements
- Adapt EGR-probe to fast AFR\O₂ measurements for closed-loop control application

WFO Development Application at Cummins Engine Plant

- Ryo Fuchinoue (Technical Specialist, Performance & Emissions Development)
- Joint application of CRADA-developed technology to meet development milestone on 5.0L V8 engine platform

• Dissemination via Publications, Presentations and Patents

- 4 presentations accepted at CLEERS, ISA and CAPoC9
 - 3 others planned for DEER and ICEC
- 2 invention disclosures filed based on CRADA technologies

Future Work

2012 Work:

- Analysis of high-speed EGR data from work at Cummins
 - Mine for correlations w/ engine events
- Develop Simultaneous Multi-Point EGR Probe diagnostic
 - Laser based alternative to MIR-LED....for better sensitivity
 - Faster & higher-spatial-density EGR mapping
- Multiplexed EGR-Probe Application at Cummins
 - Assessment of stretch Air/EGR handling hardware
 - Validation and assessment of GTPower development models

2013 Work:

- Development of stretch Air/EGR handling hardware
 - Design and model development
 - Evaluation of spatial and temporal mixing
 - Assessment of control diagnostics and strategies for efficiency gains
- Diagnostic advancement and development
 - Intake charge flow, misfire (not-speed-based detection), O2, internal residuals

Summary

- CRADA approach effectively addresses major DOE & Cummins goals
 - Improved hardware, modeling & controls for reducing intake-system penalties
 - Improved EGR spatial & temporal uniformity to enable efficiency gains
 - Advanced diagnostics to elucidate the same
 - Enabling improved engine efficiency, cost and durability
- Analytical methods improved to allow broader development applications
 - Single-port EGR Probe
 - Spatial and temporal resolution
 - Enables demonstration and assessment of *efficiency improving* closed-loop control strategies
- Quantified effectiveness of intake hardware in new development application
 - Specific architecture provides ~35-55% better performance
 - Other CRADA-protected insights valuable to Cummins' development
- Leveraging collaborations to strengthen CRADA & enhance value
 - Coordination with Cummins' SuperTruck project
 - CRADA technologies used in development outside CRADA to realize efficiency improvements
- Future work focuses on:
 - EGR-Probe improvement for simultaneous multi-point measurement & higher temperature applications
 - Applications to develop stretch air-handling hardware
 - Assessment of models, spatial & temporal mixing, and control diagnostics and strategies
 - Developing diagnostics for addressing the next barriers to *efficiency improvements*
- 14