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• HCCI Combustion offers high efficiency & low PM and NOx 
emissions, but is sensitive to fuel properties, is limited to low 
load and has no direct means to control combustion phasing 
 

• Control can be provided by varying fuel reactivity using TWO 
fuels with different reactivities - dual-fuel PCCI = RCCI:   

– Port fuel injection of gasoline                                                   
(mixed with intake air, as in spark-ignition engines) 

– Multiple direct-injections of diesel fuel into combustion 
chamber later during compression (as in diesel engines) 

– Optimized fuel blending in-cylinder 

Reactivity Controlled Compression Ignition - RCCI 

Gasoline  Diesel 

- Emissions regs. met in-cylinder 
- No Diesel Exhaust Fluid tank! 

H/PCCI RCCI 
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Optimized Reactivity Controlled Compression Ignition 

CFD plus Genetic Algorithms used  
to optimize multiple injection strategy 



Dual fuel RCCI combustion – controlled HCCI 

Heat release occurs in 3 stages  
Cool flame reactions from diesel (n-heptane) injection 
First energy release where both fuels are mixed 
Final energy release where lower reactivity fuel is located 
Changing fuel ratios changes relative magnitudes of stages 
Fueling ratio provides “next cycle” CA50 transient control 
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Kokjohn, IJER 2011 



• Compare conventional diesel 
combustion (CDC) and Reactivity 
Controlled Compression Ignition 
(RCCI) combustion 

• Same operating conditions  
    (CR, boost, IMT, swirl..) 
• ERC KIVA-Chemkin Code 

- Reduced PRF model for diesel 
and gasoline kinetics 

- Improved ERC spray models 

Base engine GM 1.9 L 
Bore (mm) 82 
Stroke (mm) 90.4 
Connecting rod (mm) 145.5 
Squish height (mm) 0.617 
Displacement (L) 0.4774 
Compression ratio  16.7:1 
Swirl ratio  1.5 - 3.2 
IVC (°ATDC)  -132° 
EVO (°ATDC) 112° 

Type Bosch common 
rail  

Included angle  155° 
Number of holes 7 
Hole size (µm) 141 

Engine specifications 

Diesel fuel injector specifications 

Combustion chamber geometry 

Light-duty automotive drive-cycle performance 
Kokjohn, PhD thesis 2012 
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• Five operating points of Ad-
hoc fuels working group 

• Tier 2 bin 5 NOx targets from:  
   
 (assumes 3500lb Passenger Car) 
• Evaluate NOx / fuel efficiency 

tradeoff using SCR for CDC 
Assumptions 
• Diesel exhaust fluid (DEF) 

consumption 1% per g/kW-hr 
NOx reduction    

                
• No DPF regeneration penalty 
• UHC and CO only lead to  

reduced work 

Size shows 
weighting 

Mode 
Speed  
(rpm) 

IMEP  
(bar) 

CDC 
Baseline  

NOx (g/kgf) 
* 

NOx 
Target  
(g/kgf) 

1 1500 2 1.3 0.2 
2 1500 3.9 0.9 0.4 
3 2000 3.3 1.1 0.3 
4 2300 5.5 8.4 0.6 
5 2600 9 17.2 1.2 

*Baseline CDC Euro 4: SAE 2012-01-0380  

Comparison between RCCI and Conventional Diesel 

Cooper, SAE 2006-01-1145  

Johnson, SAE 2011-01-0304 

Ad-hoc fuels working group 
      SAE 2001-01-0151 
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  CDC Operating Conditions * 
Mode 1 2 3 4 5 
IMEPg (bar) 2.3 3.9 3.3 5.5 9 
Speed (rev/min) 1500 1500 2000 2300 2600 
Total Fuel (mg/inj) 5.6 9.5 8 13.3 20.9 
Intake Temp. (C) 60 60 70 67 64 
Intake Press. (bar abs) 1 1 1 1.3 1.6 
EGR Rate (%) 47 38 42 25 15 
CR Inj. Pressure (bar) 330 400 500 780 1100 
Pilot SOI (° ATDC) -5.8 -7.2 -8.2 -11.7 -15.4 
Main SOI (° ATDC) 1.6 0 1.6 -0.1 -2.6 
DI fuel in Pilot (%) 34 16 15 10 5 

Euro 4 operating conditions - Conventional Diesel 
Model validation 

*Baseline CDC Euro 4: SAE 2012-01-0380  
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Comparison at 5 Modes 
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Cycle average emissions and performance 

Tier 2 Bin 5 
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Experiment-Euro 4
Simulation - Euro 4
CDC - Peak GIE

Optimized CDC with SCR for Tier 2 Bin 5 

  CDC optimized  
  GIE has higher  
  allowable PPRR  
  (advanced SOI)  
  than Euro 4  
  calibration 

Mode 3 

Model Validation (Euro 4) 
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         CDC (with SCR) 
• Main injection timing swept  
DEF consumption 1% per 1 
g/kW-hr reduction in NOx 
 

 

• Peak efficiency at tradeoff 
between fuel consumption (SOI 
timing) and DEF consumption 
(engine-out NOx) 

( )
180 to 180 100

*Total
DEF Fuel Fuel

WorkGIE
m m LHV

−= ×
+

CDC optimization with SCR 

Comparison between RCCI and CDC plus SCR 

Euro 4 

       RCCI (No SCR needed) 
Gasoline amount controls CA50 
to meet NOx/PRR constraints 
Mode 1 uses diesel LTC (no 
gasoline and EGR) 
Mode 5 has EGR for CA50 control 
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RCCI meets NOx Tier 2 Bin 5 targets 
without DEF 

DEF NOx after-treatment has small 
efficiency penalty at light-load and 
moderate EGR (~40%) 

DEF penalty larger above 5 bar IMEP 
 
 
 

Comparison of Efficiency, NOx and PRR 
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RCCI and CDC compared at 
baseline and Tier 2 Bin 5 NOx  

CDC NOx-GIE tradeoff controlled 
   by main injection timing 
RCCI meets NOx targets without 

after-treatment 
RCCI gives ~7% improvement in 

fuel consumption over CDC+SCR 
RCCI soot is an order of magnitude 

lower than CDC+SCR 
RCCI HC is ~5 times higher than 

CDC+SCR 
Crevice-originated HC emissions  

 

Cycle averaged NOx, Soot and GIE  

Splitter, SAE 2012-01-0383 
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LD RCCI improved by relaxing constraints (Euro 4 boost, IMT, swirl..) 
Peak efficiency at Mode 5 is 46.1%  CFD predicts increase to ~53% 

– 7% + 15% ~ DOE goals of 20-40% improvement 
– Higher boost (1.86 bar vs. 1.6 bar) allows CA50 advance with same 

PRR, lowers heat transfer losses due to lower Φ (lower temps) 
– Lower swirl reduces convective heat transfer losses 
– Higher wall temps improve combustion efficiency (steel piston) 

Future research directions  

15 bar/° 
11 bar/° 8.8 bar/° 

6.7 bar/° 

9.4bar/° 
Selected 

15 bar/° 

Numbers show  
Peak PRR  

18 bar/° 

15% 

Kokjohn,  
PhD thesis  
2012 

Mode 5 
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• RCCI yields clean, quiet, and efficient combustion over wide 
load/speed ranges (HD: 4 to 23 bar IMEP, 800 to 1800 rev/min).   

  HD: EPA 2010 NOx/PM emissions met in-cylinder with GIE >55%  
  LD: Low NOx and PM emissions with less EGR over FTP cycle. 
• Suggested RCCI strategy: Optimized high EGR CDC combustion 

at low load (idle) and no EGR up to Mode 5 (~9 bar IMEP). 
• RCCI LD modeling indicates ~7% improved fuel consumption 

over CDC+SCR over FTP cycle using same engine/conditions. 
• RCCI meets Tier 2 bin 5 without needing NOx after-treatment or 

DPF, but DOC will likely be needed for UHC reduction 
• Further RCCI optimization possible with: 
 higher boost pressure, higher piston temps,  
   reduced swirl, surface area, optimized crevice 
• RCCI experiments/modeling: optimized pistons, 
        alternative fuels ….. and vehicle testing!   

Summary and Conclusions 
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CDC and RCCI efficiency sensitive to selected value of peak PRR 
Maximum allowable PRR of CDC points set at 1.5 times higher than for RCCI 

Comparison between RCCI and Conventional Diesel 

  CDC RCCI CDC RCCI CDC RCCI CDC RCCI CDC RCCI 
Mode 1 2 3 4 5 
IMEPg (bar) 2.3 3.9 3.3 5.5 9 
Speed (rev/min) 1500 1500 2000 2300 2600 
Total Fuel (mg/inj.) 5.6 9.5 8 13.3 20.9 
Intake Temp. (deg. C) 60 60 70 67 64 
Intake Press. (bar abs.) 1 1 1 1.3 1.6 
EGR Rate (%) 47 61 38 0 42 0 25 0 15 36 
Premixed Gasoline (%) 0 0 0 80 0 55 0 80 0 89 
CR Inj. Pressure (bar) 330 500 400 500 500 500 780 500 1100 500 

SOI (° ATDC) Baseline -5.8/ 
1.6 

-33/ 
-8 

-7.2/ 
0 

-58/ 
-37 

-8.2/ 
1.6 

-58/ 
-37 

11.7/ 
0 

-58/ 
-37 

-18.6/ 
-2.6 

-58/ 
-37 

SOI (° ATDC) Peak GIE -14.4/ 
-6 N/A -20.2/ 

-5 N/A -15.8/ 
-6 N/A -17.6/ 

-6 N/A -23/ 
-7 N/A 

Percent of DI fuel in Pilot 20 42 15 60 15 60 10 0 10 60 

DEF (%) 0.9 0 0.8 0 0.7 0 3 0 4.6 0 
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RCCI Model Validation 
IMEPg (bar) 9 
Speed (rev/min) 1900 
Total Fuel (mg/inj.) 20 
Intake Temp. (deg. C) 36 
Intake Press. (bar abs.) 1.86 
EGR Rate (%) 41 
CR Inj. Pressure (bar) 500 
Pilot SOI (°CA) (actual) -56 
Main SOI (° ATDC) (actual) -35 
Percent of DI fuel in Pilot (%) 60% 

Kokjohn et al. SAE 2011-01-0375 
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